![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rprege0d | Structured version Visualization version GIF version |
Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rprege0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 12117 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1 | rpge0d 12121 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
4 | 2, 3 | jca 508 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 class class class wbr 4843 ℝcr 10223 0cc0 10224 ≤ cle 10364 ℝ+crp 12074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-addrcl 10285 ax-rnegex 10295 ax-cnre 10297 ax-pre-lttri 10298 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-rp 12075 |
This theorem is referenced by: eirrlem 15268 prmreclem3 15955 prmreclem6 15958 cxprec 24773 cxpsqrt 24790 cxpcn3lem 24832 cxplim 25050 cxploglim2 25057 divsqrtsumlem 25058 divsqrtsumo1 25062 fsumharmonic 25090 zetacvg 25093 logfacubnd 25298 logfacbnd3 25300 bposlem1 25361 bposlem4 25364 bposlem7 25367 bposlem9 25369 dchrmusum2 25535 dchrvmasumlem3 25540 dchrisum0flblem2 25550 dchrisum0fno1 25552 dchrisum0lema 25555 dchrisum0lem1b 25556 dchrisum0lem1 25557 dchrisum0lem2a 25558 dchrisum0lem2 25559 dchrisum0lem3 25560 chpdifbndlem2 25595 selberg3lem1 25598 pntrsumo1 25606 pntrlog2bndlem2 25619 pntrlog2bndlem4 25621 pntrlog2bndlem6a 25623 pntpbnd2 25628 pntibndlem2 25632 pntlemb 25638 pntlemg 25639 pntlemh 25640 pntlemn 25641 pntlemr 25643 pntlemj 25644 pntlemf 25646 pntlemk 25647 pntlemo 25648 blocnilem 28184 ubthlem2 28252 minvecolem4 28261 2sqmod 30164 eulerpartlemgc 30940 irrapxlem4 38175 irrapxlem5 38176 stirlinglem3 41036 stirlinglem15 41048 amgmlemALT 43351 |
Copyright terms: Public domain | W3C validator |