Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rprege0d | Structured version Visualization version GIF version |
Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rprege0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 12772 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1 | rpge0d 12776 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
4 | 2, 3 | jca 512 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 0cc0 10871 ≤ cle 11010 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 ax-pre-lttri 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-rp 12731 |
This theorem is referenced by: eirrlem 15913 prmreclem3 16619 prmreclem6 16622 cxprec 25841 cxpsqrt 25858 cxpcn3lem 25900 cxplim 26121 cxploglim2 26128 divsqrtsumlem 26129 divsqrtsumo1 26133 fsumharmonic 26161 zetacvg 26164 logfacubnd 26369 logfacbnd3 26371 bposlem1 26432 bposlem4 26435 bposlem7 26438 bposlem9 26440 2sqmod 26584 dchrmusum2 26642 dchrvmasumlem3 26647 dchrisum0flblem2 26657 dchrisum0fno1 26659 dchrisum0lema 26662 dchrisum0lem1b 26663 dchrisum0lem1 26664 dchrisum0lem2a 26665 dchrisum0lem2 26666 dchrisum0lem3 26667 chpdifbndlem2 26702 selberg3lem1 26705 pntrsumo1 26713 pntrlog2bndlem2 26726 pntrlog2bndlem4 26728 pntrlog2bndlem6a 26730 pntpbnd2 26735 pntibndlem2 26739 pntlemb 26745 pntlemg 26746 pntlemh 26747 pntlemn 26748 pntlemr 26750 pntlemj 26751 pntlemf 26753 pntlemk 26754 pntlemo 26755 blocnilem 29166 ubthlem2 29233 minvecolem4 29242 eulerpartlemgc 32329 irrapxlem4 40647 irrapxlem5 40648 stirlinglem3 43617 stirlinglem15 43629 inlinecirc02plem 46132 amgmlemALT 46507 |
Copyright terms: Public domain | W3C validator |