![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rprege0d | Structured version Visualization version GIF version |
Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rprege0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 13074 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1 | rpge0d 13078 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 class class class wbr 5147 ℝcr 11151 0cc0 11152 ≤ cle 11293 ℝ+crp 13031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-addrcl 11213 ax-rnegex 11223 ax-cnre 11225 ax-pre-lttri 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-rp 13032 |
This theorem is referenced by: eirrlem 16236 prmreclem3 16951 prmreclem6 16954 cxprec 26742 cxpsqrt 26759 cxpcn3lem 26804 cxplim 27029 cxploglim2 27036 divsqrtsumlem 27037 divsqrtsumo1 27041 fsumharmonic 27069 zetacvg 27072 logfacubnd 27279 logfacbnd3 27281 bposlem1 27342 bposlem4 27345 bposlem7 27348 bposlem9 27350 2sqmod 27494 dchrmusum2 27552 dchrvmasumlem3 27557 dchrisum0flblem2 27567 dchrisum0fno1 27569 dchrisum0lema 27572 dchrisum0lem1b 27573 dchrisum0lem1 27574 dchrisum0lem2a 27575 dchrisum0lem2 27576 dchrisum0lem3 27577 chpdifbndlem2 27612 selberg3lem1 27615 pntrsumo1 27623 pntrlog2bndlem2 27636 pntrlog2bndlem4 27638 pntrlog2bndlem6a 27640 pntpbnd2 27645 pntibndlem2 27649 pntlemb 27655 pntlemg 27656 pntlemh 27657 pntlemn 27658 pntlemr 27660 pntlemj 27661 pntlemf 27663 pntlemk 27664 pntlemo 27665 blocnilem 30832 ubthlem2 30899 minvecolem4 30908 eulerpartlemgc 34343 irrapxlem4 42812 irrapxlem5 42813 stirlinglem3 46031 stirlinglem15 46043 inlinecirc02plem 48635 amgmlemALT 49033 |
Copyright terms: Public domain | W3C validator |