| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rprege0d | Structured version Visualization version GIF version | ||
| Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rprege0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12971 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpge0d 12975 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 0cc0 11044 ≤ cle 11185 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-rp 12928 |
| This theorem is referenced by: eirrlem 16148 prmreclem3 16865 prmreclem6 16868 cxprec 26571 cxpsqrt 26588 cxpcn3lem 26633 cxplim 26858 cxploglim2 26865 divsqrtsumlem 26866 divsqrtsumo1 26870 fsumharmonic 26898 zetacvg 26901 logfacubnd 27108 logfacbnd3 27110 bposlem1 27171 bposlem4 27174 bposlem7 27177 bposlem9 27179 2sqmod 27323 dchrmusum2 27381 dchrvmasumlem3 27386 dchrisum0flblem2 27396 dchrisum0fno1 27398 dchrisum0lema 27401 dchrisum0lem1b 27402 dchrisum0lem1 27403 dchrisum0lem2a 27404 dchrisum0lem2 27405 dchrisum0lem3 27406 chpdifbndlem2 27441 selberg3lem1 27444 pntrsumo1 27452 pntrlog2bndlem2 27465 pntrlog2bndlem4 27467 pntrlog2bndlem6a 27469 pntpbnd2 27474 pntibndlem2 27478 pntlemb 27484 pntlemg 27485 pntlemh 27486 pntlemn 27487 pntlemr 27489 pntlemj 27490 pntlemf 27492 pntlemk 27493 pntlemo 27494 blocnilem 30706 ubthlem2 30773 minvecolem4 30782 eulerpartlemgc 34326 irrapxlem4 42786 irrapxlem5 42787 stirlinglem3 46047 stirlinglem15 46059 inlinecirc02plem 48748 amgmlemALT 49765 |
| Copyright terms: Public domain | W3C validator |