| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rprege0d | Structured version Visualization version GIF version | ||
| Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rprege0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12956 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpge0d 12960 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 0cc0 11028 ≤ cle 11169 ℝ+crp 12912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-addrcl 11089 ax-rnegex 11099 ax-cnre 11101 ax-pre-lttri 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-rp 12913 |
| This theorem is referenced by: eirrlem 16132 prmreclem3 16849 prmreclem6 16852 cxprec 26612 cxpsqrt 26629 cxpcn3lem 26674 cxplim 26899 cxploglim2 26906 divsqrtsumlem 26907 divsqrtsumo1 26911 fsumharmonic 26939 zetacvg 26942 logfacubnd 27149 logfacbnd3 27151 bposlem1 27212 bposlem4 27215 bposlem7 27218 bposlem9 27220 2sqmod 27364 dchrmusum2 27422 dchrvmasumlem3 27427 dchrisum0flblem2 27437 dchrisum0fno1 27439 dchrisum0lema 27442 dchrisum0lem1b 27443 dchrisum0lem1 27444 dchrisum0lem2a 27445 dchrisum0lem2 27446 dchrisum0lem3 27447 chpdifbndlem2 27482 selberg3lem1 27485 pntrsumo1 27493 pntrlog2bndlem2 27506 pntrlog2bndlem4 27508 pntrlog2bndlem6a 27510 pntpbnd2 27515 pntibndlem2 27519 pntlemb 27525 pntlemg 27526 pntlemh 27527 pntlemn 27528 pntlemr 27530 pntlemj 27531 pntlemf 27533 pntlemk 27534 pntlemo 27535 blocnilem 30767 ubthlem2 30834 minvecolem4 30843 eulerpartlemgc 34349 irrapxlem4 42818 irrapxlem5 42819 stirlinglem3 46077 stirlinglem15 46089 inlinecirc02plem 48791 amgmlemALT 49808 |
| Copyright terms: Public domain | W3C validator |