![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rprege0d | Structured version Visualization version GIF version |
Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rprege0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 13099 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1 | rpge0d 13103 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 0cc0 11184 ≤ cle 11325 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-rp 13058 |
This theorem is referenced by: eirrlem 16252 prmreclem3 16965 prmreclem6 16968 cxprec 26746 cxpsqrt 26763 cxpcn3lem 26808 cxplim 27033 cxploglim2 27040 divsqrtsumlem 27041 divsqrtsumo1 27045 fsumharmonic 27073 zetacvg 27076 logfacubnd 27283 logfacbnd3 27285 bposlem1 27346 bposlem4 27349 bposlem7 27352 bposlem9 27354 2sqmod 27498 dchrmusum2 27556 dchrvmasumlem3 27561 dchrisum0flblem2 27571 dchrisum0fno1 27573 dchrisum0lema 27576 dchrisum0lem1b 27577 dchrisum0lem1 27578 dchrisum0lem2a 27579 dchrisum0lem2 27580 dchrisum0lem3 27581 chpdifbndlem2 27616 selberg3lem1 27619 pntrsumo1 27627 pntrlog2bndlem2 27640 pntrlog2bndlem4 27642 pntrlog2bndlem6a 27644 pntpbnd2 27649 pntibndlem2 27653 pntlemb 27659 pntlemg 27660 pntlemh 27661 pntlemn 27662 pntlemr 27664 pntlemj 27665 pntlemf 27667 pntlemk 27668 pntlemo 27669 blocnilem 30836 ubthlem2 30903 minvecolem4 30912 eulerpartlemgc 34327 irrapxlem4 42781 irrapxlem5 42782 stirlinglem3 45997 stirlinglem15 46009 inlinecirc02plem 48520 amgmlemALT 48897 |
Copyright terms: Public domain | W3C validator |