| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rprege0d | Structured version Visualization version GIF version | ||
| Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rprege0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12940 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpge0d 12944 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 class class class wbr 5095 ℝcr 11016 0cc0 11017 ≤ cle 11158 ℝ+crp 12896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-addrcl 11078 ax-rnegex 11088 ax-cnre 11090 ax-pre-lttri 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-rp 12897 |
| This theorem is referenced by: eirrlem 16120 prmreclem3 16837 prmreclem6 16840 cxprec 26642 cxpsqrt 26659 cxpcn3lem 26704 cxplim 26929 cxploglim2 26936 divsqrtsumlem 26937 divsqrtsumo1 26941 fsumharmonic 26969 zetacvg 26972 logfacubnd 27179 logfacbnd3 27181 bposlem1 27242 bposlem4 27245 bposlem7 27248 bposlem9 27250 2sqmod 27394 dchrmusum2 27452 dchrvmasumlem3 27457 dchrisum0flblem2 27467 dchrisum0fno1 27469 dchrisum0lema 27472 dchrisum0lem1b 27473 dchrisum0lem1 27474 dchrisum0lem2a 27475 dchrisum0lem2 27476 dchrisum0lem3 27477 chpdifbndlem2 27512 selberg3lem1 27515 pntrsumo1 27523 pntrlog2bndlem2 27536 pntrlog2bndlem4 27538 pntrlog2bndlem6a 27540 pntpbnd2 27545 pntibndlem2 27549 pntlemb 27555 pntlemg 27556 pntlemh 27557 pntlemn 27558 pntlemr 27560 pntlemj 27561 pntlemf 27563 pntlemk 27564 pntlemo 27565 blocnilem 30805 ubthlem2 30872 minvecolem4 30881 eulerpartlemgc 34447 irrapxlem4 42982 irrapxlem5 42983 stirlinglem3 46236 stirlinglem15 46248 inlinecirc02plem 48948 amgmlemALT 49964 |
| Copyright terms: Public domain | W3C validator |