| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rprege0d | Structured version Visualization version GIF version | ||
| Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rprege0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 13051 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpge0d 13055 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 ℝcr 11128 0cc0 11129 ≤ cle 11270 ℝ+crp 13008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-addrcl 11190 ax-rnegex 11200 ax-cnre 11202 ax-pre-lttri 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-rp 13009 |
| This theorem is referenced by: eirrlem 16222 prmreclem3 16938 prmreclem6 16941 cxprec 26647 cxpsqrt 26664 cxpcn3lem 26709 cxplim 26934 cxploglim2 26941 divsqrtsumlem 26942 divsqrtsumo1 26946 fsumharmonic 26974 zetacvg 26977 logfacubnd 27184 logfacbnd3 27186 bposlem1 27247 bposlem4 27250 bposlem7 27253 bposlem9 27255 2sqmod 27399 dchrmusum2 27457 dchrvmasumlem3 27462 dchrisum0flblem2 27472 dchrisum0fno1 27474 dchrisum0lema 27477 dchrisum0lem1b 27478 dchrisum0lem1 27479 dchrisum0lem2a 27480 dchrisum0lem2 27481 dchrisum0lem3 27482 chpdifbndlem2 27517 selberg3lem1 27520 pntrsumo1 27528 pntrlog2bndlem2 27541 pntrlog2bndlem4 27543 pntrlog2bndlem6a 27545 pntpbnd2 27550 pntibndlem2 27554 pntlemb 27560 pntlemg 27561 pntlemh 27562 pntlemn 27563 pntlemr 27565 pntlemj 27566 pntlemf 27568 pntlemk 27569 pntlemo 27570 blocnilem 30785 ubthlem2 30852 minvecolem4 30861 eulerpartlemgc 34394 irrapxlem4 42848 irrapxlem5 42849 stirlinglem3 46105 stirlinglem15 46117 inlinecirc02plem 48766 amgmlemALT 49667 |
| Copyright terms: Public domain | W3C validator |