| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rprege0d | Structured version Visualization version GIF version | ||
| Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rprege0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12929 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpge0d 12933 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5086 ℝcr 11000 0cc0 11001 ≤ cle 11142 ℝ+crp 12885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-addrcl 11062 ax-rnegex 11072 ax-cnre 11074 ax-pre-lttri 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-rp 12886 |
| This theorem is referenced by: eirrlem 16108 prmreclem3 16825 prmreclem6 16828 cxprec 26617 cxpsqrt 26634 cxpcn3lem 26679 cxplim 26904 cxploglim2 26911 divsqrtsumlem 26912 divsqrtsumo1 26916 fsumharmonic 26944 zetacvg 26947 logfacubnd 27154 logfacbnd3 27156 bposlem1 27217 bposlem4 27220 bposlem7 27223 bposlem9 27225 2sqmod 27369 dchrmusum2 27427 dchrvmasumlem3 27432 dchrisum0flblem2 27442 dchrisum0fno1 27444 dchrisum0lema 27447 dchrisum0lem1b 27448 dchrisum0lem1 27449 dchrisum0lem2a 27450 dchrisum0lem2 27451 dchrisum0lem3 27452 chpdifbndlem2 27487 selberg3lem1 27490 pntrsumo1 27498 pntrlog2bndlem2 27511 pntrlog2bndlem4 27513 pntrlog2bndlem6a 27515 pntpbnd2 27520 pntibndlem2 27524 pntlemb 27530 pntlemg 27531 pntlemh 27532 pntlemn 27533 pntlemr 27535 pntlemj 27536 pntlemf 27538 pntlemk 27539 pntlemo 27540 blocnilem 30776 ubthlem2 30843 minvecolem4 30852 eulerpartlemgc 34367 irrapxlem4 42858 irrapxlem5 42859 stirlinglem3 46114 stirlinglem15 46126 inlinecirc02plem 48818 amgmlemALT 49835 |
| Copyright terms: Public domain | W3C validator |