| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rprege0d | Structured version Visualization version GIF version | ||
| Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rprege0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12995 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpge0d 12999 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
| 4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 0cc0 11068 ≤ cle 11209 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 ax-pre-lttri 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-rp 12952 |
| This theorem is referenced by: eirrlem 16172 prmreclem3 16889 prmreclem6 16892 cxprec 26595 cxpsqrt 26612 cxpcn3lem 26657 cxplim 26882 cxploglim2 26889 divsqrtsumlem 26890 divsqrtsumo1 26894 fsumharmonic 26922 zetacvg 26925 logfacubnd 27132 logfacbnd3 27134 bposlem1 27195 bposlem4 27198 bposlem7 27201 bposlem9 27203 2sqmod 27347 dchrmusum2 27405 dchrvmasumlem3 27410 dchrisum0flblem2 27420 dchrisum0fno1 27422 dchrisum0lema 27425 dchrisum0lem1b 27426 dchrisum0lem1 27427 dchrisum0lem2a 27428 dchrisum0lem2 27429 dchrisum0lem3 27430 chpdifbndlem2 27465 selberg3lem1 27468 pntrsumo1 27476 pntrlog2bndlem2 27489 pntrlog2bndlem4 27491 pntrlog2bndlem6a 27493 pntpbnd2 27498 pntibndlem2 27502 pntlemb 27508 pntlemg 27509 pntlemh 27510 pntlemn 27511 pntlemr 27513 pntlemj 27514 pntlemf 27516 pntlemk 27517 pntlemo 27518 blocnilem 30733 ubthlem2 30800 minvecolem4 30809 eulerpartlemgc 34353 irrapxlem4 42813 irrapxlem5 42814 stirlinglem3 46074 stirlinglem15 46086 inlinecirc02plem 48775 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |