![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rprege0d | Structured version Visualization version GIF version |
Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rprege0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 13023 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1 | rpge0d 13027 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 class class class wbr 5148 ℝcr 11115 0cc0 11116 ≤ cle 11256 ℝ+crp 12981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-addrcl 11177 ax-rnegex 11187 ax-cnre 11189 ax-pre-lttri 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-rp 12982 |
This theorem is referenced by: eirrlem 16154 prmreclem3 16858 prmreclem6 16861 cxprec 26533 cxpsqrt 26550 cxpcn3lem 26595 cxplim 26816 cxploglim2 26823 divsqrtsumlem 26824 divsqrtsumo1 26828 fsumharmonic 26856 zetacvg 26859 logfacubnd 27066 logfacbnd3 27068 bposlem1 27129 bposlem4 27132 bposlem7 27135 bposlem9 27137 2sqmod 27281 dchrmusum2 27339 dchrvmasumlem3 27344 dchrisum0flblem2 27354 dchrisum0fno1 27356 dchrisum0lema 27359 dchrisum0lem1b 27360 dchrisum0lem1 27361 dchrisum0lem2a 27362 dchrisum0lem2 27363 dchrisum0lem3 27364 chpdifbndlem2 27399 selberg3lem1 27402 pntrsumo1 27410 pntrlog2bndlem2 27423 pntrlog2bndlem4 27425 pntrlog2bndlem6a 27427 pntpbnd2 27432 pntibndlem2 27436 pntlemb 27442 pntlemg 27443 pntlemh 27444 pntlemn 27445 pntlemr 27447 pntlemj 27448 pntlemf 27450 pntlemk 27451 pntlemo 27452 blocnilem 30489 ubthlem2 30556 minvecolem4 30565 eulerpartlemgc 33824 irrapxlem4 42025 irrapxlem5 42026 stirlinglem3 45250 stirlinglem15 45262 inlinecirc02plem 47633 amgmlemALT 48011 |
Copyright terms: Public domain | W3C validator |