Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rprege0d | Structured version Visualization version GIF version |
Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rprege0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 12701 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1 | rpge0d 12705 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
4 | 2, 3 | jca 511 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 0cc0 10802 ≤ cle 10941 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-rp 12660 |
This theorem is referenced by: eirrlem 15841 prmreclem3 16547 prmreclem6 16550 cxprec 25746 cxpsqrt 25763 cxpcn3lem 25805 cxplim 26026 cxploglim2 26033 divsqrtsumlem 26034 divsqrtsumo1 26038 fsumharmonic 26066 zetacvg 26069 logfacubnd 26274 logfacbnd3 26276 bposlem1 26337 bposlem4 26340 bposlem7 26343 bposlem9 26345 2sqmod 26489 dchrmusum2 26547 dchrvmasumlem3 26552 dchrisum0flblem2 26562 dchrisum0fno1 26564 dchrisum0lema 26567 dchrisum0lem1b 26568 dchrisum0lem1 26569 dchrisum0lem2a 26570 dchrisum0lem2 26571 dchrisum0lem3 26572 chpdifbndlem2 26607 selberg3lem1 26610 pntrsumo1 26618 pntrlog2bndlem2 26631 pntrlog2bndlem4 26633 pntrlog2bndlem6a 26635 pntpbnd2 26640 pntibndlem2 26644 pntlemb 26650 pntlemg 26651 pntlemh 26652 pntlemn 26653 pntlemr 26655 pntlemj 26656 pntlemf 26658 pntlemk 26659 pntlemo 26660 blocnilem 29067 ubthlem2 29134 minvecolem4 29143 eulerpartlemgc 32229 irrapxlem4 40563 irrapxlem5 40564 stirlinglem3 43507 stirlinglem15 43519 inlinecirc02plem 46020 amgmlemALT 46393 |
Copyright terms: Public domain | W3C validator |