Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lediv2ad | Structured version Visualization version GIF version |
Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
rpaddcld.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
lediv2ad.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lediv2ad.4 | ⊢ (𝜑 → 0 ≤ 𝐶) |
lediv2ad.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
lediv2ad | ⊢ (𝜑 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpregt0d 12806 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
3 | rpaddcld.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
4 | 3 | rpregt0d 12806 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
5 | lediv2ad.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | lediv2ad.4 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐶) | |
7 | 5, 6 | jca 511 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
8 | lediv2ad.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
9 | lediv2a 11897 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)) | |
10 | 2, 4, 7, 8, 9 | syl31anc 1371 | 1 ⊢ (𝜑 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2101 class class class wbr 5077 (class class class)co 7295 ℝcr 10898 0cc0 10899 < clt 11037 ≤ cle 11038 / cdiv 11660 ℝ+crp 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-po 5505 df-so 5506 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-rp 12759 |
This theorem is referenced by: rlimno1 15393 lgamgulmlem2 26207 lgamgulmlem3 26208 lgamgulmlem5 26210 selberg3lem2 26734 pntrlog2bndlem2 26754 pntrlog2bndlem6a 26758 pntrlog2bnd 26760 aks4d1p1p7 40108 aks4d1p6 40115 ioodvbdlimc1lem2 43508 ioodvbdlimc2lem 43510 stirlinglem1 43650 stirlinglem10 43659 fourierdlem30 43713 |
Copyright terms: Public domain | W3C validator |