Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lemuldiv2d | Structured version Visualization version GIF version |
Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
ltmul1d.1 | โข (๐ โ ๐ด โ โ) |
ltmul1d.2 | โข (๐ โ ๐ต โ โ) |
ltmul1d.3 | โข (๐ โ ๐ถ โ โ+) |
Ref | Expression |
---|---|
lemuldiv2d | โข (๐ โ ((๐ถ ยท ๐ด) โค ๐ต โ ๐ด โค (๐ต / ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmul1d.1 | . 2 โข (๐ โ ๐ด โ โ) | |
2 | ltmul1d.2 | . 2 โข (๐ โ ๐ต โ โ) | |
3 | ltmul1d.3 | . . 3 โข (๐ โ ๐ถ โ โ+) | |
4 | 3 | rpregt0d 12879 | . 2 โข (๐ โ (๐ถ โ โ โง 0 < ๐ถ)) |
5 | lemuldiv2 11957 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง (๐ถ โ โ โง 0 < ๐ถ)) โ ((๐ถ ยท ๐ด) โค ๐ต โ ๐ด โค (๐ต / ๐ถ))) | |
6 | 1, 2, 4, 5 | syl3anc 1370 | 1 โข (๐ โ ((๐ถ ยท ๐ด) โค ๐ต โ ๐ด โค (๐ต / ๐ถ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 396 โ wcel 2105 class class class wbr 5092 (class class class)co 7337 โcr 10971 0cc0 10972 ยท cmul 10977 < clt 11110 โค cle 11111 / cdiv 11733 โ+crp 12831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-po 5532 df-so 5533 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-rp 12832 |
This theorem is referenced by: amgm2 15180 eftlub 15917 itg2mulc 25018 abelthlem7 25703 lgamgulmlem2 26285 lgamgulmlem3 26286 basellem8 26343 chpub 26474 dchrisumlem1 26743 dchrisum0lem1 26770 selberglem2 26800 pntrlog2bndlem5 26835 pntpbnd2 26841 pntibndlem2 26845 pntlemn 26854 blocnilem 29454 ubthlem2 29521 aks4d1p1p5 40337 flt4lem7 40758 |
Copyright terms: Public domain | W3C validator |