Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1 Structured version   Visualization version   GIF version

Theorem dchrisum0lem1 26199
 Description: Lemma for dchrisum0 26203. (Contributed by Mario Carneiro, 12-May-2016.) (Revised by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
Assertion
Ref Expression
dchrisum0lem1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem1
StepHypRef Expression
1 fzfid 13390 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
2 fzfid 13390 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∈ Fin)
3 fzfid 13390 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin)
4 elfznn 12985 . . . . . . 7 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
5 elfzuz 12952 . . . . . . 7 (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))
64, 5anim12i 615 . . . . . 6 ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))))
76a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))))
8 elfzuz 12952 . . . . . . 7 (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) → 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))
9 elfznn 12985 . . . . . . 7 (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ)
108, 9anim12ci 616 . . . . . 6 ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))))
1110a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))))
12 eluzelz 12292 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) → 𝑚 ∈ ℤ)
1312ad2antll 728 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℤ)
1413zred 12126 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℝ)
15 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
16 2z 12053 . . . . . . . . . . . . 13 2 ∈ ℤ
17 rpexpcl 13498 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
1815, 16, 17sylancl 589 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
1918rpred 12472 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ)
2019adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℝ)
21 simprl 770 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℕ)
2221nnrpd 12470 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ+)
2314, 20, 22lemuldivd 12521 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 · 𝑑) ≤ (𝑥↑2) ↔ 𝑚 ≤ ((𝑥↑2) / 𝑑)))
2421nnred 11689 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ)
2515rprege0d 12479 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
26 flge0nn0 13239 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
27 nn0p1nn 11973 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
2825, 26, 273syl 18 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ ℕ)
2928adantr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ∈ ℕ)
30 simprr 772 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))
31 eluznn 12358 . . . . . . . . . . . 12 ((((⌊‘𝑥) + 1) ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
3229, 30, 31syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℕ)
3332nnrpd 12470 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℝ+)
3424, 20, 33lemuldiv2d 12522 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 · 𝑑) ≤ (𝑥↑2) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
3523, 34bitr3d 284 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
36 rpcn 12440 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
3736adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
3837sqvald 13557 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) = (𝑥 · 𝑥))
3938adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) = (𝑥 · 𝑥))
40 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥 ∈ ℝ+)
4140rpred 12472 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥 ∈ ℝ)
42 reflcl 13215 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
43 peano2re 10851 . . . . . . . . . . . . . . . 16 ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
4441, 42, 433syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ∈ ℝ)
45 fllep1 13220 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
4641, 45syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥 ≤ ((⌊‘𝑥) + 1))
47 eluzle 12295 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) → ((⌊‘𝑥) + 1) ≤ 𝑚)
4847ad2antll 728 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ≤ 𝑚)
4941, 44, 14, 46, 48letrd 10835 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥𝑚)
5041, 14, 40lemul1d 12515 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥𝑚 ↔ (𝑥 · 𝑥) ≤ (𝑚 · 𝑥)))
5149, 50mpbid 235 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥 · 𝑥) ≤ (𝑚 · 𝑥))
5239, 51eqbrtrd 5054 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ≤ (𝑚 · 𝑥))
5320, 41, 33ledivmuld 12525 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (((𝑥↑2) / 𝑚) ≤ 𝑥 ↔ (𝑥↑2) ≤ (𝑚 · 𝑥)))
5452, 53mpbird 260 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑚) ≤ 𝑥)
55 nnre 11681 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ → 𝑑 ∈ ℝ)
5655ad2antrl 727 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ)
5720, 32nndivred 11728 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑚) ∈ ℝ)
58 letr 10772 . . . . . . . . . . . 12 ((𝑑 ∈ ℝ ∧ ((𝑥↑2) / 𝑚) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑑 ≤ ((𝑥↑2) / 𝑚) ∧ ((𝑥↑2) / 𝑚) ≤ 𝑥) → 𝑑𝑥))
5956, 57, 41, 58syl3anc 1368 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑 ≤ ((𝑥↑2) / 𝑚) ∧ ((𝑥↑2) / 𝑚) ≤ 𝑥) → 𝑑𝑥))
6054, 59mpan2d 693 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) → 𝑑𝑥))
6135, 60sylbid 243 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) → 𝑑𝑥))
6261pm4.71rd 566 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ (𝑑𝑥𝑚 ≤ ((𝑥↑2) / 𝑑))))
63 nnge1 11702 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ → 1 ≤ 𝑑)
6463ad2antrl 727 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 1 ≤ 𝑑)
65 1re 10679 . . . . . . . . . . . . . . 15 1 ∈ ℝ
66 0lt1 11200 . . . . . . . . . . . . . . 15 0 < 1
6765, 66pm3.2i 474 . . . . . . . . . . . . . 14 (1 ∈ ℝ ∧ 0 < 1)
6822rpregt0d 12478 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ ℝ ∧ 0 < 𝑑))
6918adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℝ+)
7069rpregt0d 12478 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) ∈ ℝ ∧ 0 < (𝑥↑2)))
71 lediv2 11568 . . . . . . . . . . . . . 14 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑑 ∈ ℝ ∧ 0 < 𝑑) ∧ ((𝑥↑2) ∈ ℝ ∧ 0 < (𝑥↑2))) → (1 ≤ 𝑑 ↔ ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1)))
7267, 68, 70, 71mp3an2i 1463 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (1 ≤ 𝑑 ↔ ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1)))
7364, 72mpbid 235 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1))
7420recnd 10707 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℂ)
7574div1d 11446 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 1) = (𝑥↑2))
7673, 75breqtrd 5058 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ≤ (𝑥↑2))
77 simpl 486 . . . . . . . . . . . . 13 ((𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))) → 𝑑 ∈ ℕ)
78 nndivre 11715 . . . . . . . . . . . . 13 (((𝑥↑2) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((𝑥↑2) / 𝑑) ∈ ℝ)
7919, 77, 78syl2an 598 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ∈ ℝ)
80 letr 10772 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ ((𝑥↑2) / 𝑑) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑚 ≤ ((𝑥↑2) / 𝑑) ∧ ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) → 𝑚 ≤ (𝑥↑2)))
8114, 79, 20, 80syl3anc 1368 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 ≤ ((𝑥↑2) / 𝑑) ∧ ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) → 𝑚 ≤ (𝑥↑2)))
8276, 81mpan2d 693 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) → 𝑚 ≤ (𝑥↑2)))
8335, 82sylbird 263 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) → 𝑚 ≤ (𝑥↑2)))
8483pm4.71rd 566 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
8535, 62, 843bitr3d 312 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑𝑥𝑚 ≤ ((𝑥↑2) / 𝑑)) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
86 fznnfl 13279 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
8786baibd 543 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ 𝑑𝑥))
8841, 21, 87syl2anc 587 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ 𝑑𝑥))
8979flcld 13217 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℤ)
90 elfz5 12948 . . . . . . . . . 10 ((𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ ℤ) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
9130, 89, 90syl2anc 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
92 flge 13224 . . . . . . . . . 10 ((((𝑥↑2) / 𝑑) ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
9379, 13, 92syl2anc 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
9491, 93bitr4d 285 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ ((𝑥↑2) / 𝑑)))
9588, 94anbi12d 633 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑑𝑥𝑚 ≤ ((𝑥↑2) / 𝑑))))
9620flcld 13217 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (⌊‘(𝑥↑2)) ∈ ℤ)
97 elfz5 12948 . . . . . . . . . 10 ((𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) ∧ (⌊‘(𝑥↑2)) ∈ ℤ) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
9830, 96, 97syl2anc 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
99 flge 13224 . . . . . . . . . 10 (((𝑥↑2) ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ (𝑥↑2) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
10020, 13, 99syl2anc 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ (𝑥↑2) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
10198, 100bitr4d 285 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (𝑥↑2)))
102 fznnfl 13279 . . . . . . . . . 10 (((𝑥↑2) / 𝑚) ∈ ℝ → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ (𝑑 ∈ ℕ ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
103102baibd 543 . . . . . . . . 9 ((((𝑥↑2) / 𝑚) ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
10457, 21, 103syl2anc 587 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
105101, 104anbi12d 633 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
10685, 95, 1053bitr4d 314 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))))))
107106ex 416 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))))))
1087, 11, 107pm5.21ndd 384 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))))))
109 ssun2 4078 . . . . . . . 8 (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))
11028adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ ℕ)
111 nnuz 12321 . . . . . . . . . 10 ℕ = (ℤ‘1)
112110, 111eleqtrdi 2862 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
113 dchrisum0lem1a 26169 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))))
114113simprd 499 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥)))
115 fzsplit2 12981 . . . . . . . . 9 ((((⌊‘𝑥) + 1) ∈ (ℤ‘1) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
116112, 114, 115syl2anc 587 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
117109, 116sseqtrrid 3945 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑))))
118117sselda 3892 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))))
119 rpvmasum2.g . . . . . . . . 9 𝐺 = (DChr‘𝑁)
120 rpvmasum.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
121 rpvmasum2.d . . . . . . . . 9 𝐷 = (Base‘𝐺)
122 rpvmasum.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
123 rpvmasum2.w . . . . . . . . . . . . 13 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
124123ssrab3 3986 . . . . . . . . . . . 12 𝑊 ⊆ (𝐷 ∖ { 1 })
125 dchrisum0.b . . . . . . . . . . . 12 (𝜑𝑋𝑊)
126124, 125sseldi 3890 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
127126eldifad 3870 . . . . . . . . . 10 (𝜑𝑋𝐷)
128127ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑋𝐷)
129 elfzelz 12956 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℤ)
130129adantl 485 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℤ)
131119, 120, 121, 122, 128, 130dchrzrhcl 25928 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
132 elfznn 12985 . . . . . . . . . . . 12 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℕ)
133132adantl 485 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℕ)
134133nnrpd 12470 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℝ+)
135134rpsqrtcld 14819 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℝ+)
136135rpcnd 12474 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℂ)
137135rpne0d 12477 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ≠ 0)
138131, 136, 137divcld 11454 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
1394adantl 485 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
140139nnrpd 12470 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
141140rpsqrtcld 14819 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑑) ∈ ℝ+)
142141rpcnne0d 12481 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
143142adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
144143simpld 498 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑑) ∈ ℂ)
145143simprd 499 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑑) ≠ 0)
146138, 144, 145divcld 11454 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
147118, 146syldan 594 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
148147anasss 470 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
1491, 2, 3, 108, 148fsumcom2 15177 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
150149mpteq2dva 5127 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
15165a1i 11 . . 3 (𝜑 → 1 ∈ ℝ)
152 2cn 11749 . . . . . . . 8 2 ∈ ℂ
15315rpsqrtcld 14819 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
154153rpcnd 12474 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
155 mulcl 10659 . . . . . . . 8 ((2 ∈ ℂ ∧ (√‘𝑥) ∈ ℂ) → (2 · (√‘𝑥)) ∈ ℂ)
156152, 154, 155sylancr 590 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℂ)
157141rprecred 12483 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑑)) ∈ ℝ)
1581, 157fsumrecl 15139 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) ∈ ℝ)
159158recnd 10707 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) ∈ ℂ)
160159, 156subcld 11035 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) ∈ ℂ)
161 2re 11748 . . . . . . . . . . 11 2 ∈ ℝ
162 dchrisum0.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (0[,)+∞))
163 elrege0 12886 . . . . . . . . . . . . 13 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
164162, 163sylib 221 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
165164simpld 498 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
166 remulcl 10660 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
167161, 165, 166sylancr 590 . . . . . . . . . 10 (𝜑 → (2 · 𝐶) ∈ ℝ)
168167adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝐶) ∈ ℝ)
169168, 153rerpdivcld 12503 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
170169recnd 10707 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℂ)
171156, 160, 170adddird 10704 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((2 · (√‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) · ((2 · 𝐶) / (√‘𝑥))) = (((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))))
172156, 159pncan3d 11038 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)))
173172oveq1d 7165 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((2 · (√‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) · ((2 · 𝐶) / (√‘𝑥))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
174 2cnd 11752 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
175174, 154, 170mulassd 10702 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) = (2 · ((√‘𝑥) · ((2 · 𝐶) / (√‘𝑥)))))
176168recnd 10707 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝐶) ∈ ℂ)
177153rpne0d 12477 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ≠ 0)
178176, 154, 177divcan2d 11456 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((√‘𝑥) · ((2 · 𝐶) / (√‘𝑥))) = (2 · 𝐶))
179178oveq2d 7166 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (2 · ((√‘𝑥) · ((2 · 𝐶) / (√‘𝑥)))) = (2 · (2 · 𝐶)))
180175, 179eqtrd 2793 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) = (2 · (2 · 𝐶)))
181180oveq1d 7165 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))) = ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))))
182171, 173, 1813eqtr3d 2801 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) = ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))))
183182mpteq2dva 5127 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))))
184 remulcl 10660 . . . . . . . 8 ((2 ∈ ℝ ∧ (2 · 𝐶) ∈ ℝ) → (2 · (2 · 𝐶)) ∈ ℝ)
185161, 167, 184sylancr 590 . . . . . . 7 (𝜑 → (2 · (2 · 𝐶)) ∈ ℝ)
186185recnd 10707 . . . . . 6 (𝜑 → (2 · (2 · 𝐶)) ∈ ℂ)
187186adantr 484 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (2 · (2 · 𝐶)) ∈ ℂ)
188160, 170mulcld 10699 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℂ)
189 rpssre 12437 . . . . . 6 + ⊆ ℝ
190 o1const 15024 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (2 · (2 · 𝐶)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (2 · (2 · 𝐶))) ∈ 𝑂(1))
191189, 186, 190sylancr 590 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (2 · 𝐶))) ∈ 𝑂(1))
192 eqid 2758 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))))
193192divsqrsum 25666 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ dom ⇝𝑟
194 rlimdmo1 15022 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ dom ⇝𝑟 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ 𝑂(1))
195193, 194mp1i 13 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ 𝑂(1))
196176, 154, 177divrecd 11457 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) = ((2 · 𝐶) · (1 / (√‘𝑥))))
197196mpteq2dva 5127 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) · (1 / (√‘𝑥)))))
198153rprecred 12483 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1 / (√‘𝑥)) ∈ ℝ)
199167recnd 10707 . . . . . . . . . 10 (𝜑 → (2 · 𝐶) ∈ ℂ)
200 rlimconst 14949 . . . . . . . . . 10 ((ℝ+ ⊆ ℝ ∧ (2 · 𝐶) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (2 · 𝐶)) ⇝𝑟 (2 · 𝐶))
201189, 199, 200sylancr 590 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · 𝐶)) ⇝𝑟 (2 · 𝐶))
202 sqrtlim 25657 . . . . . . . . . 10 (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0
203202a1i 11 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0)
204168, 198, 201, 203rlimmul 15049 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) · (1 / (√‘𝑥)))) ⇝𝑟 ((2 · 𝐶) · 0))
205197, 204eqbrtrd 5054 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ⇝𝑟 ((2 · 𝐶) · 0))
206 rlimo1 15021 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ⇝𝑟 ((2 · 𝐶) · 0) → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ∈ 𝑂(1))
207205, 206syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ∈ 𝑂(1))
208160, 170, 195, 207o1mul2 15029 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))) ∈ 𝑂(1))
209187, 188, 191, 208o1add2 15028 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))) ∈ 𝑂(1))
210183, 209eqeltrd 2852 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) ∈ 𝑂(1))
211158, 169remulcld 10709 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℝ)
2123, 147fsumcl 15138 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
2131, 212fsumcl 15138 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
214213abscld 14844 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ)
215211recnd 10707 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℂ)
216215abscld 14844 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) ∈ ℝ)
217212abscld 14844 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ)
2181, 217fsumrecl 15139 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ)
2191, 212fsumabs 15204 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
220169adantr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
221157, 220remulcld 10709 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℝ)
222118, 138syldan 594 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
2233, 222fsumcl 15138 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
224223abscld 14844 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ ℝ)
225 rpvmasum.a . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
226 rpvmasum2.1 . . . . . . . . . . 11 1 = (0g𝐺)
227 dchrisum0lem1.f . . . . . . . . . . 11 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
228 dchrisum0.s . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
229 dchrisum0.1 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
230120, 122, 225, 119, 121, 226, 123, 125, 227, 162, 228, 229dchrisum0lem1b 26198 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥)))
231224, 220, 141, 230lediv1dd 12530 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (√‘𝑑)) ≤ (((2 · 𝐶) / (√‘𝑥)) / (√‘𝑑)))
232141rpcnd 12474 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑑) ∈ ℂ)
233141rpne0d 12477 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑑) ≠ 0)
234223, 232, 233absdivd 14863 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) = ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (abs‘(√‘𝑑))))
2353, 232, 222, 233fsumdivc 15189 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
236235fveq2d 6662 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) = (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
237141rprege0d 12479 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑑) ∈ ℝ ∧ 0 ≤ (√‘𝑑)))
238 absid 14704 . . . . . . . . . . . 12 (((√‘𝑑) ∈ ℝ ∧ 0 ≤ (√‘𝑑)) → (abs‘(√‘𝑑)) = (√‘𝑑))
239237, 238syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(√‘𝑑)) = (√‘𝑑))
240239oveq2d 7166 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (abs‘(√‘𝑑))) = ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (√‘𝑑)))
241234, 236, 2403eqtr3rd 2802 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (√‘𝑑)) = (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
242170adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℂ)
243242, 232, 233divrec2d 11458 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((2 · 𝐶) / (√‘𝑥)) / (√‘𝑑)) = ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
244231, 241, 2433brtr3d 5063 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
2451, 217, 221, 244fsumle 15202 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
246157recnd 10707 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑑)) ∈ ℂ)
2471, 170, 246fsummulc1 15188 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
248245, 247breqtrrd 5060 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
249214, 218, 211, 219, 248letrd 10835 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
250211leabsd 14822 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ≤ (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))))
251214, 211, 216, 249, 250letrd 10835 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))))
252251adantrr 716 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))))
253151, 210, 211, 213, 252o1le 15057 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
254150, 253eqeltrrd 2853 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  {crab 3074   ∖ cdif 3855   ∪ cun 3856   ⊆ wss 3858  {csn 4522   class class class wbr 5032   ↦ cmpt 5112  dom cdm 5524  ‘cfv 6335  (class class class)co 7150  ℂcc 10573  ℝcr 10574  0cc0 10575  1c1 10576   + caddc 10578   · cmul 10580  +∞cpnf 10710   < clt 10713   ≤ cle 10714   − cmin 10908   / cdiv 11335  ℕcn 11674  2c2 11729  ℕ0cn0 11934  ℤcz 12020  ℤ≥cuz 12282  ℝ+crp 12430  [,)cico 12781  ...cfz 12939  ⌊cfl 13209  seqcseq 13418  ↑cexp 13479  √csqrt 14640  abscabs 14641   ⇝ cli 14889   ⇝𝑟 crli 14890  𝑂(1)co1 14891  Σcsu 15090  Basecbs 16541  0gc0g 16771  ℤRHomczrh 20269  ℤ/nℤczn 20272  DChrcdchr 25915 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-ec 8301  df-qs 8305  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-o1 14895  df-lo1 14896  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-pi 15474  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-qus 16840  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-mhm 18022  df-submnd 18023  df-grp 18172  df-minusg 18173  df-sbg 18174  df-mulg 18292  df-subg 18343  df-nsg 18344  df-eqg 18345  df-ghm 18423  df-cntz 18514  df-cmn 18975  df-abl 18976  df-mgp 19308  df-ur 19320  df-ring 19367  df-cring 19368  df-oppr 19444  df-dvdsr 19462  df-unit 19463  df-rnghom 19538  df-subrg 19601  df-lmod 19704  df-lss 19772  df-lsp 19812  df-sra 20012  df-rgmod 20013  df-lidl 20014  df-rsp 20015  df-2idl 20073  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-zring 20239  df-zrh 20273  df-zn 20276  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-cmp 22087  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247  df-cxp 25248  df-dchr 25916 This theorem is referenced by:  dchrisum0lem3  26202
 Copyright terms: Public domain W3C validator