Proof of Theorem dchrisum0lem1
Step | Hyp | Ref
| Expression |
1 | | fzfid 13693 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(1...(⌊‘𝑥))
∈ Fin) |
2 | | fzfid 13693 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2))) ∈ Fin) |
3 | | fzfid 13693 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin) |
4 | | elfznn 13285 |
. . . . . . 7
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℕ) |
5 | | elfzuz 13252 |
. . . . . . 7
⊢ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))) |
6 | 4, 5 | anim12i 613 |
. . . . . 6
⊢ ((𝑑 ∈
(1...(⌊‘𝑥))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) |
7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝑑 ∈
(1...(⌊‘𝑥))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))))) |
8 | | elfzuz 13252 |
. . . . . . 7
⊢ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) → 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))) |
9 | | elfznn 13285 |
. . . . . . 7
⊢ (𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ) |
10 | 8, 9 | anim12ci 614 |
. . . . . 6
⊢ ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) |
11 | 10 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))))) |
12 | | eluzelz 12592 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)) → 𝑚 ∈ ℤ) |
13 | 12 | ad2antll 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℤ) |
14 | 13 | zred 12426 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℝ) |
15 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
16 | | 2z 12352 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℤ |
17 | | rpexpcl 13801 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 2 ∈ ℤ) → (𝑥↑2) ∈
ℝ+) |
18 | 15, 16, 17 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑2) ∈
ℝ+) |
19 | 18 | rpred 12772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑2) ∈
ℝ) |
20 | 19 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℝ) |
21 | | simprl 768 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℕ) |
22 | 21 | nnrpd 12770 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ+) |
23 | 14, 20, 22 | lemuldivd 12821 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑚 · 𝑑) ≤ (𝑥↑2) ↔ 𝑚 ≤ ((𝑥↑2) / 𝑑))) |
24 | 21 | nnred 11988 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ) |
25 | 15 | rprege0d 12779 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤
𝑥)) |
26 | | flge0nn0 13540 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(⌊‘𝑥) ∈
ℕ0) |
27 | | nn0p1nn 12272 |
. . . . . . . . . . . . . 14
⊢
((⌊‘𝑥)
∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ) |
28 | 25, 26, 27 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((⌊‘𝑥) + 1)
∈ ℕ) |
29 | 28 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ∈
ℕ) |
30 | | simprr 770 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))) |
31 | | eluznn 12658 |
. . . . . . . . . . . 12
⊢
((((⌊‘𝑥)
+ 1) ∈ ℕ ∧ 𝑚
∈ (ℤ≥‘((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ) |
32 | 29, 30, 31 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℕ) |
33 | 32 | nnrpd 12770 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℝ+) |
34 | 24, 20, 33 | lemuldiv2d 12822 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑚 · 𝑑) ≤ (𝑥↑2) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚))) |
35 | 23, 34 | bitr3d 280 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚))) |
36 | | rpcn 12740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
37 | 36 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℂ) |
38 | 37 | sqvald 13861 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑2) = (𝑥 · 𝑥)) |
39 | 38 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥↑2) = (𝑥 · 𝑥)) |
40 | | simplr 766 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑥 ∈ ℝ+) |
41 | 40 | rpred 12772 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑥 ∈ ℝ) |
42 | | reflcl 13516 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ →
(⌊‘𝑥) ∈
ℝ) |
43 | | peano2re 11148 |
. . . . . . . . . . . . . . . 16
⊢
((⌊‘𝑥)
∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ) |
44 | 41, 42, 43 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ∈
ℝ) |
45 | | fllep1 13521 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1)) |
46 | 41, 45 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑥 ≤ ((⌊‘𝑥) + 1)) |
47 | | eluzle 12595 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)) → ((⌊‘𝑥) + 1) ≤ 𝑚) |
48 | 47 | ad2antll 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ≤ 𝑚) |
49 | 41, 44, 14, 46, 48 | letrd 11132 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑥 ≤ 𝑚) |
50 | 41, 14, 40 | lemul1d 12815 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥 ≤ 𝑚 ↔ (𝑥 · 𝑥) ≤ (𝑚 · 𝑥))) |
51 | 49, 50 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥 · 𝑥) ≤ (𝑚 · 𝑥)) |
52 | 39, 51 | eqbrtrd 5096 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ≤ (𝑚 · 𝑥)) |
53 | 20, 41, 33 | ledivmuld 12825 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (((𝑥↑2) / 𝑚) ≤ 𝑥 ↔ (𝑥↑2) ≤ (𝑚 · 𝑥))) |
54 | 52, 53 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑚) ≤ 𝑥) |
55 | | nnre 11980 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ ℕ → 𝑑 ∈
ℝ) |
56 | 55 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ) |
57 | 20, 32 | nndivred 12027 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑚) ∈ ℝ) |
58 | | letr 11069 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∈ ℝ ∧ ((𝑥↑2) / 𝑚) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑑 ≤ ((𝑥↑2) / 𝑚) ∧ ((𝑥↑2) / 𝑚) ≤ 𝑥) → 𝑑 ≤ 𝑥)) |
59 | 56, 57, 41, 58 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑑 ≤ ((𝑥↑2) / 𝑚) ∧ ((𝑥↑2) / 𝑚) ≤ 𝑥) → 𝑑 ≤ 𝑥)) |
60 | 54, 59 | mpan2d 691 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) → 𝑑 ≤ 𝑥)) |
61 | 35, 60 | sylbid 239 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) → 𝑑 ≤ 𝑥)) |
62 | 61 | pm4.71rd 563 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ (𝑑 ≤ 𝑥 ∧ 𝑚 ≤ ((𝑥↑2) / 𝑑)))) |
63 | | nnge1 12001 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ ℕ → 1 ≤
𝑑) |
64 | 63 | ad2antrl 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 1 ≤ 𝑑) |
65 | | 1re 10975 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
66 | | 0lt1 11497 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
67 | 65, 66 | pm3.2i 471 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℝ ∧ 0 < 1) |
68 | 22 | rpregt0d 12778 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ ℝ ∧ 0 < 𝑑)) |
69 | 18 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈
ℝ+) |
70 | 69 | rpregt0d 12778 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) ∈ ℝ ∧ 0 < (𝑥↑2))) |
71 | | lediv2 11865 |
. . . . . . . . . . . . . 14
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (𝑑 ∈ ℝ ∧ 0 < 𝑑) ∧ ((𝑥↑2) ∈ ℝ ∧ 0 < (𝑥↑2))) → (1 ≤ 𝑑 ↔ ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1))) |
72 | 67, 68, 70, 71 | mp3an2i 1465 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (1 ≤ 𝑑 ↔ ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1))) |
73 | 64, 72 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1)) |
74 | 20 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℂ) |
75 | 74 | div1d 11743 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 1) = (𝑥↑2)) |
76 | 73, 75 | breqtrd 5100 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) |
77 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))) → 𝑑 ∈ ℕ) |
78 | | nndivre 12014 |
. . . . . . . . . . . . 13
⊢ (((𝑥↑2) ∈ ℝ ∧
𝑑 ∈ ℕ) →
((𝑥↑2) / 𝑑) ∈
ℝ) |
79 | 19, 77, 78 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ∈ ℝ) |
80 | | letr 11069 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℝ ∧ ((𝑥↑2) / 𝑑) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑚 ≤ ((𝑥↑2) / 𝑑) ∧ ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) → 𝑚 ≤ (𝑥↑2))) |
81 | 14, 79, 20, 80 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑚 ≤ ((𝑥↑2) / 𝑑) ∧ ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) → 𝑚 ≤ (𝑥↑2))) |
82 | 76, 81 | mpan2d 691 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) → 𝑚 ≤ (𝑥↑2))) |
83 | 35, 82 | sylbird 259 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) → 𝑚 ≤ (𝑥↑2))) |
84 | 83 | pm4.71rd 563 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚)))) |
85 | 35, 62, 84 | 3bitr3d 309 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑑 ≤ 𝑥 ∧ 𝑚 ≤ ((𝑥↑2) / 𝑑)) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚)))) |
86 | | fznnfl 13582 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → (𝑑 ∈
(1...(⌊‘𝑥))
↔ (𝑑 ∈ ℕ
∧ 𝑑 ≤ 𝑥))) |
87 | 86 | baibd 540 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑑 ∈
(1...(⌊‘𝑥))
↔ 𝑑 ≤ 𝑥)) |
88 | 41, 21, 87 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ 𝑑 ≤ 𝑥)) |
89 | 79 | flcld 13518 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℤ) |
90 | | elfz5 13248 |
. . . . . . . . . 10
⊢ ((𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ ℤ) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑)))) |
91 | 30, 89, 90 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑)))) |
92 | | flge 13525 |
. . . . . . . . . 10
⊢ ((((𝑥↑2) / 𝑑) ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑)))) |
93 | 79, 13, 92 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑)))) |
94 | 91, 93 | bitr4d 281 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ ((𝑥↑2) / 𝑑))) |
95 | 88, 94 | anbi12d 631 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑑 ≤ 𝑥 ∧ 𝑚 ≤ ((𝑥↑2) / 𝑑)))) |
96 | 20 | flcld 13518 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (⌊‘(𝑥↑2)) ∈
ℤ) |
97 | | elfz5 13248 |
. . . . . . . . . 10
⊢ ((𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)) ∧ (⌊‘(𝑥↑2)) ∈ ℤ) →
(𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (⌊‘(𝑥↑2)))) |
98 | 30, 96, 97 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (⌊‘(𝑥↑2)))) |
99 | | flge 13525 |
. . . . . . . . . 10
⊢ (((𝑥↑2) ∈ ℝ ∧
𝑚 ∈ ℤ) →
(𝑚 ≤ (𝑥↑2) ↔ 𝑚 ≤ (⌊‘(𝑥↑2)))) |
100 | 20, 13, 99 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ (𝑥↑2) ↔ 𝑚 ≤ (⌊‘(𝑥↑2)))) |
101 | 98, 100 | bitr4d 281 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (𝑥↑2))) |
102 | | fznnfl 13582 |
. . . . . . . . . 10
⊢ (((𝑥↑2) / 𝑚) ∈ ℝ → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ (𝑑 ∈ ℕ ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚)))) |
103 | 102 | baibd 540 |
. . . . . . . . 9
⊢ ((((𝑥↑2) / 𝑚) ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚))) |
104 | 57, 21, 103 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚))) |
105 | 101, 104 | anbi12d 631 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚)))) |
106 | 85, 95, 105 | 3bitr4d 311 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))))) |
107 | 106 | ex 413 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))))))) |
108 | 7, 11, 107 | pm5.21ndd 381 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝑑 ∈
(1...(⌊‘𝑥))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))))) |
109 | | ssun2 4107 |
. . . . . . . 8
⊢
(((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) |
110 | 28 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((⌊‘𝑥) +
1) ∈ ℕ) |
111 | | nnuz 12621 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
112 | 110, 111 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((⌊‘𝑥) +
1) ∈ (ℤ≥‘1)) |
113 | | dchrisum0lem1a 26634 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ≤ ((𝑥↑2) / 𝑑) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈
(ℤ≥‘(⌊‘𝑥)))) |
114 | 113 | simprd 496 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (⌊‘((𝑥↑2) / 𝑑)) ∈
(ℤ≥‘(⌊‘𝑥))) |
115 | | fzsplit2 13281 |
. . . . . . . . 9
⊢
((((⌊‘𝑥)
+ 1) ∈ (ℤ≥‘1) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈
(ℤ≥‘(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))) |
116 | 112, 114,
115 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))) |
117 | 109, 116 | sseqtrrid 3974 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑)))) |
118 | 117 | sselda 3921 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) |
119 | | rpvmasum2.g |
. . . . . . . . 9
⊢ 𝐺 = (DChr‘𝑁) |
120 | | rpvmasum.z |
. . . . . . . . 9
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
121 | | rpvmasum2.d |
. . . . . . . . 9
⊢ 𝐷 = (Base‘𝐺) |
122 | | rpvmasum.l |
. . . . . . . . 9
⊢ 𝐿 = (ℤRHom‘𝑍) |
123 | | rpvmasum2.w |
. . . . . . . . . . . . 13
⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} |
124 | 123 | ssrab3 4015 |
. . . . . . . . . . . 12
⊢ 𝑊 ⊆ (𝐷 ∖ { 1 }) |
125 | | dchrisum0.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ 𝑊) |
126 | 124, 125 | sselid 3919 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ { 1 })) |
127 | 126 | eldifad 3899 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
128 | 127 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑋 ∈ 𝐷) |
129 | | elfzelz 13256 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℤ) |
130 | 129 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℤ) |
131 | 119, 120,
121, 122, 128, 130 | dchrzrhcl 26393 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
132 | | elfznn 13285 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℕ) |
133 | 132 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℕ) |
134 | 133 | nnrpd 12770 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℝ+) |
135 | 134 | rpsqrtcld 15123 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈
ℝ+) |
136 | 135 | rpcnd 12774 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℂ) |
137 | 135 | rpne0d 12777 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ≠ 0) |
138 | 131, 136,
137 | divcld 11751 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
139 | 4 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℕ) |
140 | 139 | nnrpd 12770 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℝ+) |
141 | 140 | rpsqrtcld 15123 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑑)
∈ ℝ+) |
142 | 141 | rpcnne0d 12781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((√‘𝑑)
∈ ℂ ∧ (√‘𝑑) ≠ 0)) |
143 | 142 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → ((√‘𝑑) ∈ ℂ ∧
(√‘𝑑) ≠
0)) |
144 | 143 | simpld 495 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑑) ∈ ℂ) |
145 | 143 | simprd 496 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑑) ≠ 0) |
146 | 138, 144,
145 | divcld 11751 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
147 | 118, 146 | syldan 591 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) → (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
148 | 147 | anasss 467 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈
(1...(⌊‘𝑥))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑))))) → (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
149 | 1, 2, 3, 108, 148 | fsumcom2 15486 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) |
150 | 149 | mpteq2dva 5174 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) = (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)))) |
151 | 65 | a1i 11 |
. . 3
⊢ (𝜑 → 1 ∈
ℝ) |
152 | | 2cn 12048 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
153 | 15 | rpsqrtcld 15123 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(√‘𝑥) ∈
ℝ+) |
154 | 153 | rpcnd 12774 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(√‘𝑥) ∈
ℂ) |
155 | | mulcl 10955 |
. . . . . . . 8
⊢ ((2
∈ ℂ ∧ (√‘𝑥) ∈ ℂ) → (2 ·
(√‘𝑥)) ∈
ℂ) |
156 | 152, 154,
155 | sylancr 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· (√‘𝑥))
∈ ℂ) |
157 | 141 | rprecred 12783 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1 / (√‘𝑑)) ∈ ℝ) |
158 | 1, 157 | fsumrecl 15446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ∈
ℝ) |
159 | 158 | recnd 11003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ∈
ℂ) |
160 | 159, 156 | subcld 11332 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) ∈ ℂ) |
161 | | 2re 12047 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
162 | | dchrisum0.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
163 | | elrege0 13186 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ (0[,)+∞) ↔
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶)) |
164 | 162, 163 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
165 | 164 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℝ) |
166 | | remulcl 10956 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ 𝐶
∈ ℝ) → (2 · 𝐶) ∈ ℝ) |
167 | 161, 165,
166 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝐶) ∈
ℝ) |
168 | 167 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· 𝐶) ∈
ℝ) |
169 | 168, 153 | rerpdivcld 12803 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· 𝐶) /
(√‘𝑥)) ∈
ℝ) |
170 | 169 | recnd 11003 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· 𝐶) /
(√‘𝑥)) ∈
ℂ) |
171 | 156, 160,
170 | adddird 11000 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (((2
· (√‘𝑥))
+ (Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) · ((2 · 𝐶) / (√‘𝑥))) = (((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) + ((Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))) |
172 | 156, 159 | pncan3d 11335 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· (√‘𝑥))
+ (Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑))) |
173 | 172 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (((2
· (√‘𝑥))
+ (Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) · ((2 · 𝐶) / (√‘𝑥))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) |
174 | | 2cnd 12051 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 ∈
ℂ) |
175 | 174, 154,
170 | mulassd 10998 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· (√‘𝑥))
· ((2 · 𝐶) /
(√‘𝑥))) = (2
· ((√‘𝑥)
· ((2 · 𝐶) /
(√‘𝑥))))) |
176 | 168 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· 𝐶) ∈
ℂ) |
177 | 153 | rpne0d 12777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(√‘𝑥) ≠
0) |
178 | 176, 154,
177 | divcan2d 11753 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((√‘𝑥) ·
((2 · 𝐶) /
(√‘𝑥))) = (2
· 𝐶)) |
179 | 178 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· ((√‘𝑥)
· ((2 · 𝐶) /
(√‘𝑥)))) = (2
· (2 · 𝐶))) |
180 | 175, 179 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· (√‘𝑥))
· ((2 · 𝐶) /
(√‘𝑥))) = (2
· (2 · 𝐶))) |
181 | 180 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (((2
· (√‘𝑥))
· ((2 · 𝐶) /
(√‘𝑥))) +
((Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))) = ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 ·
(√‘𝑥)))
· ((2 · 𝐶) /
(√‘𝑥))))) |
182 | 171, 173,
181 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))) = ((2
· (2 · 𝐶)) +
((Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))) |
183 | 182 | mpteq2dva 5174 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥)))) =
(𝑥 ∈
ℝ+ ↦ ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 ·
(√‘𝑥)))
· ((2 · 𝐶) /
(√‘𝑥)))))) |
184 | | remulcl 10956 |
. . . . . . . 8
⊢ ((2
∈ ℝ ∧ (2 · 𝐶) ∈ ℝ) → (2 · (2
· 𝐶)) ∈
ℝ) |
185 | 161, 167,
184 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (2 · (2 ·
𝐶)) ∈
ℝ) |
186 | 185 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → (2 · (2 ·
𝐶)) ∈
ℂ) |
187 | 186 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· (2 · 𝐶))
∈ ℂ) |
188 | 160, 170 | mulcld 10995 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℂ) |
189 | | rpssre 12737 |
. . . . . 6
⊢
ℝ+ ⊆ ℝ |
190 | | o1const 15329 |
. . . . . 6
⊢
((ℝ+ ⊆ ℝ ∧ (2 · (2 ·
𝐶)) ∈ ℂ) →
(𝑥 ∈
ℝ+ ↦ (2 · (2 · 𝐶))) ∈ 𝑂(1)) |
191 | 189, 186,
190 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (2
· (2 · 𝐶)))
∈ 𝑂(1)) |
192 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) |
193 | 192 | divsqrsum 26131 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) ∈ dom
⇝𝑟 |
194 | | rlimdmo1 15327 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) ∈ dom ⇝𝑟
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 ·
(√‘𝑥)))) ∈
𝑂(1)) |
195 | 193, 194 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) ∈ 𝑂(1)) |
196 | 176, 154,
177 | divrecd 11754 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· 𝐶) /
(√‘𝑥)) = ((2
· 𝐶) · (1 /
(√‘𝑥)))) |
197 | 196 | mpteq2dva 5174 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2
· 𝐶) /
(√‘𝑥))) =
(𝑥 ∈
ℝ+ ↦ ((2 · 𝐶) · (1 / (√‘𝑥))))) |
198 | 153 | rprecred 12783 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 /
(√‘𝑥)) ∈
ℝ) |
199 | 167 | recnd 11003 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝐶) ∈
ℂ) |
200 | | rlimconst 15253 |
. . . . . . . . . 10
⊢
((ℝ+ ⊆ ℝ ∧ (2 · 𝐶) ∈ ℂ) → (𝑥 ∈ ℝ+
↦ (2 · 𝐶))
⇝𝑟 (2 · 𝐶)) |
201 | 189, 199,
200 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (2
· 𝐶))
⇝𝑟 (2 · 𝐶)) |
202 | | sqrtlim 26122 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
↦ (1 / (√‘𝑥))) ⇝𝑟
0 |
203 | 202 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 /
(√‘𝑥)))
⇝𝑟 0) |
204 | 168, 198,
201, 203 | rlimmul 15355 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2
· 𝐶) · (1 /
(√‘𝑥))))
⇝𝑟 ((2 · 𝐶) · 0)) |
205 | 197, 204 | eqbrtrd 5096 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2
· 𝐶) /
(√‘𝑥)))
⇝𝑟 ((2 · 𝐶) · 0)) |
206 | | rlimo1 15326 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
↦ ((2 · 𝐶) /
(√‘𝑥)))
⇝𝑟 ((2 · 𝐶) · 0) → (𝑥 ∈ ℝ+ ↦ ((2
· 𝐶) /
(√‘𝑥))) ∈
𝑂(1)) |
207 | 205, 206 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2
· 𝐶) /
(√‘𝑥))) ∈
𝑂(1)) |
208 | 160, 170,
195, 207 | o1mul2 15334 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))) ∈ 𝑂(1)) |
209 | 187, 188,
191, 208 | o1add2 15333 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2
· (2 · 𝐶)) +
((Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))) ∈ 𝑂(1)) |
210 | 183, 209 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥)))) ∈
𝑂(1)) |
211 | 158, 169 | remulcld 11005 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))) ∈
ℝ) |
212 | 3, 147 | fsumcl 15445 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
213 | 1, 212 | fsumcl 15445 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
214 | 213 | abscld 15148 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ) |
215 | 211 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))) ∈
ℂ) |
216 | 215 | abscld 15148 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥)))) ∈
ℝ) |
217 | 212 | abscld 15148 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ) |
218 | 1, 217 | fsumrecl 15446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ) |
219 | 1, 212 | fsumabs 15513 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)))) |
220 | 169 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((2 · 𝐶) /
(√‘𝑥)) ∈
ℝ) |
221 | 157, 220 | remulcld 11005 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℝ) |
222 | 118, 138 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
223 | 3, 222 | fsumcl 15445 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
224 | 223 | abscld 15148 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) ∈ ℝ) |
225 | | rpvmasum.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
226 | | rpvmasum2.1 |
. . . . . . . . . . 11
⊢ 1 =
(0g‘𝐺) |
227 | | dchrisum0lem1.f |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) |
228 | | dchrisum0.s |
. . . . . . . . . . 11
⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) |
229 | | dchrisum0.1 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦))) |
230 | 120, 122,
225, 119, 121, 226, 123, 125, 227, 162, 228, 229 | dchrisum0lem1b 26663 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥))) |
231 | 224, 220,
141, 230 | lediv1dd 12830 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) / (√‘𝑑)) ≤ (((2 · 𝐶) / (√‘𝑥)) / (√‘𝑑))) |
232 | 141 | rpcnd 12774 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑑)
∈ ℂ) |
233 | 141 | rpne0d 12777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑑)
≠ 0) |
234 | 223, 232,
233 | absdivd 15167 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) = ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) / (abs‘(√‘𝑑)))) |
235 | 3, 232, 222, 233 | fsumdivc 15498 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) |
236 | 235 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) = (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)))) |
237 | 141 | rprege0d 12779 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((√‘𝑑)
∈ ℝ ∧ 0 ≤ (√‘𝑑))) |
238 | | absid 15008 |
. . . . . . . . . . . 12
⊢
(((√‘𝑑)
∈ ℝ ∧ 0 ≤ (√‘𝑑)) → (abs‘(√‘𝑑)) = (√‘𝑑)) |
239 | 237, 238 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(√‘𝑑)) = (√‘𝑑)) |
240 | 239 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) / (abs‘(√‘𝑑))) = ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) / (√‘𝑑))) |
241 | 234, 236,
240 | 3eqtr3rd 2787 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) / (√‘𝑑)) = (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)))) |
242 | 170 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((2 · 𝐶) /
(√‘𝑥)) ∈
ℂ) |
243 | 242, 232,
233 | divrec2d 11755 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((2 · 𝐶) /
(√‘𝑥)) /
(√‘𝑑)) = ((1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥)))) |
244 | 231, 241,
243 | 3brtr3d 5105 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) |
245 | 1, 217, 221, 244 | fsumle 15511 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) |
246 | 157 | recnd 11003 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1 / (√‘𝑑)) ∈ ℂ) |
247 | 1, 170, 246 | fsummulc1 15497 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))) =
Σ𝑑 ∈
(1...(⌊‘𝑥))((1
/ (√‘𝑑))
· ((2 · 𝐶) /
(√‘𝑥)))) |
248 | 245, 247 | breqtrrd 5102 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) |
249 | 214, 218,
211, 219, 248 | letrd 11132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) |
250 | 211 | leabsd 15126 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))) ≤
(abs‘(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))))) |
251 | 214, 211,
216, 249, 250 | letrd 11132 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (abs‘(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))))) |
252 | 251 | adantrr 714 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (abs‘(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))))) |
253 | 151, 210,
211, 213, 252 | o1le 15364 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)) |
254 | 150, 253 | eqeltrrd 2840 |
1
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)) |