MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1 Structured version   Visualization version   GIF version

Theorem dchrisum0lem1 26025
Description: Lemma for dchrisum0 26029. (Contributed by Mario Carneiro, 12-May-2016.) (Revised by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
Assertion
Ref Expression
dchrisum0lem1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem1
StepHypRef Expression
1 fzfid 13336 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
2 fzfid 13336 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∈ Fin)
3 fzfid 13336 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin)
4 elfznn 12931 . . . . . . 7 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
5 elfzuz 12899 . . . . . . 7 (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))
64, 5anim12i 612 . . . . . 6 ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))))
76a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))))
8 elfzuz 12899 . . . . . . 7 (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) → 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))
9 elfznn 12931 . . . . . . 7 (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ)
108, 9anim12ci 613 . . . . . 6 ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))))
1110a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))))
12 eluzelz 12247 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) → 𝑚 ∈ ℤ)
1312ad2antll 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℤ)
1413zred 12081 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℝ)
15 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
16 2z 12008 . . . . . . . . . . . . 13 2 ∈ ℤ
17 rpexpcl 13443 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
1815, 16, 17sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
1918rpred 12426 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ)
2019adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℝ)
21 simprl 767 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℕ)
2221nnrpd 12424 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ+)
2314, 20, 22lemuldivd 12475 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 · 𝑑) ≤ (𝑥↑2) ↔ 𝑚 ≤ ((𝑥↑2) / 𝑑)))
2421nnred 11647 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ)
2515rprege0d 12433 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
26 flge0nn0 13185 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
27 nn0p1nn 11930 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
2825, 26, 273syl 18 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ ℕ)
2928adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ∈ ℕ)
30 simprr 769 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))
31 eluznn 12312 . . . . . . . . . . . 12 ((((⌊‘𝑥) + 1) ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
3229, 30, 31syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℕ)
3332nnrpd 12424 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℝ+)
3424, 20, 33lemuldiv2d 12476 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 · 𝑑) ≤ (𝑥↑2) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
3523, 34bitr3d 282 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
36 rpcn 12394 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
3736adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
3837sqvald 13502 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) = (𝑥 · 𝑥))
3938adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) = (𝑥 · 𝑥))
40 simplr 765 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥 ∈ ℝ+)
4140rpred 12426 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥 ∈ ℝ)
42 reflcl 13161 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
43 peano2re 10807 . . . . . . . . . . . . . . . 16 ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
4441, 42, 433syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ∈ ℝ)
45 fllep1 13166 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
4641, 45syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥 ≤ ((⌊‘𝑥) + 1))
47 eluzle 12250 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) → ((⌊‘𝑥) + 1) ≤ 𝑚)
4847ad2antll 725 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ≤ 𝑚)
4941, 44, 14, 46, 48letrd 10791 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥𝑚)
5041, 14, 40lemul1d 12469 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥𝑚 ↔ (𝑥 · 𝑥) ≤ (𝑚 · 𝑥)))
5149, 50mpbid 233 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥 · 𝑥) ≤ (𝑚 · 𝑥))
5239, 51eqbrtrd 5085 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ≤ (𝑚 · 𝑥))
5320, 41, 33ledivmuld 12479 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (((𝑥↑2) / 𝑚) ≤ 𝑥 ↔ (𝑥↑2) ≤ (𝑚 · 𝑥)))
5452, 53mpbird 258 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑚) ≤ 𝑥)
55 nnre 11639 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ → 𝑑 ∈ ℝ)
5655ad2antrl 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ)
5720, 32nndivred 11685 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑚) ∈ ℝ)
58 letr 10728 . . . . . . . . . . . 12 ((𝑑 ∈ ℝ ∧ ((𝑥↑2) / 𝑚) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑑 ≤ ((𝑥↑2) / 𝑚) ∧ ((𝑥↑2) / 𝑚) ≤ 𝑥) → 𝑑𝑥))
5956, 57, 41, 58syl3anc 1365 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑 ≤ ((𝑥↑2) / 𝑚) ∧ ((𝑥↑2) / 𝑚) ≤ 𝑥) → 𝑑𝑥))
6054, 59mpan2d 690 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) → 𝑑𝑥))
6135, 60sylbid 241 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) → 𝑑𝑥))
6261pm4.71rd 563 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ (𝑑𝑥𝑚 ≤ ((𝑥↑2) / 𝑑))))
63 nnge1 11659 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ → 1 ≤ 𝑑)
6463ad2antrl 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 1 ≤ 𝑑)
65 1re 10635 . . . . . . . . . . . . . . 15 1 ∈ ℝ
66 0lt1 11156 . . . . . . . . . . . . . . 15 0 < 1
6765, 66pm3.2i 471 . . . . . . . . . . . . . 14 (1 ∈ ℝ ∧ 0 < 1)
6822rpregt0d 12432 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ ℝ ∧ 0 < 𝑑))
6918adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℝ+)
7069rpregt0d 12432 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) ∈ ℝ ∧ 0 < (𝑥↑2)))
71 lediv2 11524 . . . . . . . . . . . . . 14 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑑 ∈ ℝ ∧ 0 < 𝑑) ∧ ((𝑥↑2) ∈ ℝ ∧ 0 < (𝑥↑2))) → (1 ≤ 𝑑 ↔ ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1)))
7267, 68, 70, 71mp3an2i 1459 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (1 ≤ 𝑑 ↔ ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1)))
7364, 72mpbid 233 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1))
7420recnd 10663 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℂ)
7574div1d 11402 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 1) = (𝑥↑2))
7673, 75breqtrd 5089 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ≤ (𝑥↑2))
77 simpl 483 . . . . . . . . . . . . 13 ((𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))) → 𝑑 ∈ ℕ)
78 nndivre 11672 . . . . . . . . . . . . 13 (((𝑥↑2) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((𝑥↑2) / 𝑑) ∈ ℝ)
7919, 77, 78syl2an 595 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ∈ ℝ)
80 letr 10728 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ ((𝑥↑2) / 𝑑) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑚 ≤ ((𝑥↑2) / 𝑑) ∧ ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) → 𝑚 ≤ (𝑥↑2)))
8114, 79, 20, 80syl3anc 1365 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 ≤ ((𝑥↑2) / 𝑑) ∧ ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) → 𝑚 ≤ (𝑥↑2)))
8276, 81mpan2d 690 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) → 𝑚 ≤ (𝑥↑2)))
8335, 82sylbird 261 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) → 𝑚 ≤ (𝑥↑2)))
8483pm4.71rd 563 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
8535, 62, 843bitr3d 310 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑𝑥𝑚 ≤ ((𝑥↑2) / 𝑑)) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
86 fznnfl 13225 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
8786baibd 540 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ 𝑑𝑥))
8841, 21, 87syl2anc 584 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ 𝑑𝑥))
8979flcld 13163 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℤ)
90 elfz5 12895 . . . . . . . . . 10 ((𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ ℤ) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
9130, 89, 90syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
92 flge 13170 . . . . . . . . . 10 ((((𝑥↑2) / 𝑑) ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
9379, 13, 92syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
9491, 93bitr4d 283 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ ((𝑥↑2) / 𝑑)))
9588, 94anbi12d 630 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑑𝑥𝑚 ≤ ((𝑥↑2) / 𝑑))))
9620flcld 13163 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (⌊‘(𝑥↑2)) ∈ ℤ)
97 elfz5 12895 . . . . . . . . . 10 ((𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) ∧ (⌊‘(𝑥↑2)) ∈ ℤ) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
9830, 96, 97syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
99 flge 13170 . . . . . . . . . 10 (((𝑥↑2) ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ (𝑥↑2) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
10020, 13, 99syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ (𝑥↑2) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
10198, 100bitr4d 283 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (𝑥↑2)))
102 fznnfl 13225 . . . . . . . . . 10 (((𝑥↑2) / 𝑚) ∈ ℝ → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ (𝑑 ∈ ℕ ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
103102baibd 540 . . . . . . . . 9 ((((𝑥↑2) / 𝑚) ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
10457, 21, 103syl2anc 584 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
105101, 104anbi12d 630 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
10685, 95, 1053bitr4d 312 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))))))
107106ex 413 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))))))
1087, 11, 107pm5.21ndd 381 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))))))
109 ssun2 4153 . . . . . . . 8 (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))
11028adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ ℕ)
111 nnuz 12275 . . . . . . . . . 10 ℕ = (ℤ‘1)
112110, 111syl6eleq 2928 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
113 dchrisum0lem1a 25995 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))))
114113simprd 496 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥)))
115 fzsplit2 12927 . . . . . . . . 9 ((((⌊‘𝑥) + 1) ∈ (ℤ‘1) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
116112, 114, 115syl2anc 584 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
117109, 116sseqtrrid 4024 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑))))
118117sselda 3971 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))))
119 rpvmasum2.g . . . . . . . . 9 𝐺 = (DChr‘𝑁)
120 rpvmasum.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
121 rpvmasum2.d . . . . . . . . 9 𝐷 = (Base‘𝐺)
122 rpvmasum.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
123 rpvmasum2.w . . . . . . . . . . . . 13 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
124123ssrab3 4061 . . . . . . . . . . . 12 𝑊 ⊆ (𝐷 ∖ { 1 })
125 dchrisum0.b . . . . . . . . . . . 12 (𝜑𝑋𝑊)
126124, 125sseldi 3969 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
127126eldifad 3952 . . . . . . . . . 10 (𝜑𝑋𝐷)
128127ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑋𝐷)
129 elfzelz 12903 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℤ)
130129adantl 482 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℤ)
131119, 120, 121, 122, 128, 130dchrzrhcl 25754 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
132 elfznn 12931 . . . . . . . . . . . 12 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℕ)
133132adantl 482 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℕ)
134133nnrpd 12424 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℝ+)
135134rpsqrtcld 14766 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℝ+)
136135rpcnd 12428 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℂ)
137135rpne0d 12431 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ≠ 0)
138131, 136, 137divcld 11410 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
1394adantl 482 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
140139nnrpd 12424 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
141140rpsqrtcld 14766 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑑) ∈ ℝ+)
142141rpcnne0d 12435 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
143142adantr 481 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
144143simpld 495 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑑) ∈ ℂ)
145143simprd 496 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑑) ≠ 0)
146138, 144, 145divcld 11410 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
147118, 146syldan 591 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
148147anasss 467 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
1491, 2, 3, 108, 148fsumcom2 15124 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
150149mpteq2dva 5158 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
15165a1i 11 . . 3 (𝜑 → 1 ∈ ℝ)
152 2cn 11706 . . . . . . . 8 2 ∈ ℂ
15315rpsqrtcld 14766 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
154153rpcnd 12428 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
155 mulcl 10615 . . . . . . . 8 ((2 ∈ ℂ ∧ (√‘𝑥) ∈ ℂ) → (2 · (√‘𝑥)) ∈ ℂ)
156152, 154, 155sylancr 587 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℂ)
157141rprecred 12437 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑑)) ∈ ℝ)
1581, 157fsumrecl 15086 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) ∈ ℝ)
159158recnd 10663 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) ∈ ℂ)
160159, 156subcld 10991 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) ∈ ℂ)
161 2re 11705 . . . . . . . . . . 11 2 ∈ ℝ
162 dchrisum0.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (0[,)+∞))
163 elrege0 12837 . . . . . . . . . . . . 13 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
164162, 163sylib 219 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
165164simpld 495 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
166 remulcl 10616 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
167161, 165, 166sylancr 587 . . . . . . . . . 10 (𝜑 → (2 · 𝐶) ∈ ℝ)
168167adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝐶) ∈ ℝ)
169168, 153rerpdivcld 12457 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
170169recnd 10663 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℂ)
171156, 160, 170adddird 10660 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((2 · (√‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) · ((2 · 𝐶) / (√‘𝑥))) = (((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))))
172156, 159pncan3d 10994 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)))
173172oveq1d 7165 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((2 · (√‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) · ((2 · 𝐶) / (√‘𝑥))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
174 2cnd 11709 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
175174, 154, 170mulassd 10658 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) = (2 · ((√‘𝑥) · ((2 · 𝐶) / (√‘𝑥)))))
176168recnd 10663 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝐶) ∈ ℂ)
177153rpne0d 12431 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ≠ 0)
178176, 154, 177divcan2d 11412 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((√‘𝑥) · ((2 · 𝐶) / (√‘𝑥))) = (2 · 𝐶))
179178oveq2d 7166 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (2 · ((√‘𝑥) · ((2 · 𝐶) / (√‘𝑥)))) = (2 · (2 · 𝐶)))
180175, 179eqtrd 2861 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) = (2 · (2 · 𝐶)))
181180oveq1d 7165 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))) = ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))))
182171, 173, 1813eqtr3d 2869 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) = ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))))
183182mpteq2dva 5158 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))))
184 remulcl 10616 . . . . . . . 8 ((2 ∈ ℝ ∧ (2 · 𝐶) ∈ ℝ) → (2 · (2 · 𝐶)) ∈ ℝ)
185161, 167, 184sylancr 587 . . . . . . 7 (𝜑 → (2 · (2 · 𝐶)) ∈ ℝ)
186185recnd 10663 . . . . . 6 (𝜑 → (2 · (2 · 𝐶)) ∈ ℂ)
187186adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (2 · (2 · 𝐶)) ∈ ℂ)
188160, 170mulcld 10655 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℂ)
189 rpssre 12391 . . . . . 6 + ⊆ ℝ
190 o1const 14971 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (2 · (2 · 𝐶)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (2 · (2 · 𝐶))) ∈ 𝑂(1))
191189, 186, 190sylancr 587 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (2 · 𝐶))) ∈ 𝑂(1))
192 eqid 2826 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))))
193192divsqrsum 25492 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ dom ⇝𝑟
194 rlimdmo1 14969 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ dom ⇝𝑟 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ 𝑂(1))
195193, 194mp1i 13 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ 𝑂(1))
196176, 154, 177divrecd 11413 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) = ((2 · 𝐶) · (1 / (√‘𝑥))))
197196mpteq2dva 5158 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) · (1 / (√‘𝑥)))))
198153rprecred 12437 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1 / (√‘𝑥)) ∈ ℝ)
199167recnd 10663 . . . . . . . . . 10 (𝜑 → (2 · 𝐶) ∈ ℂ)
200 rlimconst 14896 . . . . . . . . . 10 ((ℝ+ ⊆ ℝ ∧ (2 · 𝐶) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (2 · 𝐶)) ⇝𝑟 (2 · 𝐶))
201189, 199, 200sylancr 587 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · 𝐶)) ⇝𝑟 (2 · 𝐶))
202 sqrtlim 25483 . . . . . . . . . 10 (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0
203202a1i 11 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0)
204168, 198, 201, 203rlimmul 14996 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) · (1 / (√‘𝑥)))) ⇝𝑟 ((2 · 𝐶) · 0))
205197, 204eqbrtrd 5085 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ⇝𝑟 ((2 · 𝐶) · 0))
206 rlimo1 14968 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ⇝𝑟 ((2 · 𝐶) · 0) → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ∈ 𝑂(1))
207205, 206syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ∈ 𝑂(1))
208160, 170, 195, 207o1mul2 14976 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))) ∈ 𝑂(1))
209187, 188, 191, 208o1add2 14975 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))) ∈ 𝑂(1))
210183, 209eqeltrd 2918 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) ∈ 𝑂(1))
211158, 169remulcld 10665 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℝ)
2123, 147fsumcl 15085 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
2131, 212fsumcl 15085 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
214213abscld 14791 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ)
215211recnd 10663 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℂ)
216215abscld 14791 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) ∈ ℝ)
217212abscld 14791 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ)
2181, 217fsumrecl 15086 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ)
2191, 212fsumabs 15151 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
220169adantr 481 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
221157, 220remulcld 10665 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℝ)
222118, 138syldan 591 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
2233, 222fsumcl 15085 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
224223abscld 14791 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ ℝ)
225 rpvmasum.a . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
226 rpvmasum2.1 . . . . . . . . . . 11 1 = (0g𝐺)
227 dchrisum0lem1.f . . . . . . . . . . 11 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
228 dchrisum0.s . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
229 dchrisum0.1 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
230120, 122, 225, 119, 121, 226, 123, 125, 227, 162, 228, 229dchrisum0lem1b 26024 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥)))
231224, 220, 141, 230lediv1dd 12484 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (√‘𝑑)) ≤ (((2 · 𝐶) / (√‘𝑥)) / (√‘𝑑)))
232141rpcnd 12428 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑑) ∈ ℂ)
233141rpne0d 12431 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑑) ≠ 0)
234223, 232, 233absdivd 14810 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) = ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (abs‘(√‘𝑑))))
2353, 232, 222, 233fsumdivc 15136 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
236235fveq2d 6673 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) = (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
237141rprege0d 12433 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑑) ∈ ℝ ∧ 0 ≤ (√‘𝑑)))
238 absid 14651 . . . . . . . . . . . 12 (((√‘𝑑) ∈ ℝ ∧ 0 ≤ (√‘𝑑)) → (abs‘(√‘𝑑)) = (√‘𝑑))
239237, 238syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(√‘𝑑)) = (√‘𝑑))
240239oveq2d 7166 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (abs‘(√‘𝑑))) = ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (√‘𝑑)))
241234, 236, 2403eqtr3rd 2870 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (√‘𝑑)) = (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
242170adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℂ)
243242, 232, 233divrec2d 11414 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((2 · 𝐶) / (√‘𝑥)) / (√‘𝑑)) = ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
244231, 241, 2433brtr3d 5094 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
2451, 217, 221, 244fsumle 15149 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
246157recnd 10663 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑑)) ∈ ℂ)
2471, 170, 246fsummulc1 15135 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
248245, 247breqtrrd 5091 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
249214, 218, 211, 219, 248letrd 10791 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
250211leabsd 14769 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ≤ (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))))
251214, 211, 216, 249, 250letrd 10791 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))))
252251adantrr 713 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))))
253151, 210, 211, 213, 252o1le 15004 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
254150, 253eqeltrrd 2919 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3021  wral 3143  {crab 3147  cdif 3937  cun 3938  wss 3940  {csn 4564   class class class wbr 5063  cmpt 5143  dom cdm 5554  cfv 6354  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  2c2 11686  0cn0 11891  cz 11975  cuz 12237  +crp 12384  [,)cico 12735  ...cfz 12887  cfl 13155  seqcseq 13364  cexp 13424  csqrt 14587  abscabs 14588  cli 14836  𝑟 crli 14837  𝑂(1)co1 14838  Σcsu 15037  Basecbs 16478  0gc0g 16708  ℤRHomczrh 20582  ℤ/nczn 20585  DChrcdchr 25741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-ec 8286  df-qs 8290  df-map 8403  df-pm 8404  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ioc 12738  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13425  df-fac 13629  df-bc 13658  df-hash 13686  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-o1 14842  df-lo1 14843  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-qus 16777  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18051  df-minusg 18052  df-sbg 18053  df-mulg 18170  df-subg 18221  df-nsg 18222  df-eqg 18223  df-ghm 18301  df-cntz 18392  df-cmn 18844  df-abl 18845  df-mgp 19176  df-ur 19188  df-ring 19235  df-cring 19236  df-oppr 19309  df-dvdsr 19327  df-unit 19328  df-rnghom 19403  df-subrg 19469  df-lmod 19572  df-lss 19640  df-lsp 19680  df-sra 19880  df-rgmod 19881  df-lidl 19882  df-rsp 19883  df-2idl 19940  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-fbas 20477  df-fg 20478  df-cnfld 20481  df-zring 20553  df-zrh 20586  df-zn 20589  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-cld 21562  df-ntr 21563  df-cls 21564  df-nei 21641  df-lp 21679  df-perf 21680  df-cn 21770  df-cnp 21771  df-haus 21858  df-cmp 21930  df-tx 22105  df-hmeo 22298  df-fil 22389  df-fm 22481  df-flim 22482  df-flf 22483  df-xms 22864  df-ms 22865  df-tms 22866  df-cncf 23420  df-limc 24398  df-dv 24399  df-log 25072  df-cxp 25073  df-dchr 25742
This theorem is referenced by:  dchrisum0lem3  26028
  Copyright terms: Public domain W3C validator