MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivdivd Structured version   Visualization version   GIF version

Theorem ledivdivd 12795
Description: Invert ratios of positive numbers and swap their ordering. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
rpaddcld.1 (𝜑𝐵 ∈ ℝ+)
ltdiv2d.3 (𝜑𝐶 ∈ ℝ+)
ledivdivd.4 (𝜑𝐷 ∈ ℝ+)
ledivdivd.5 (𝜑 → (𝐴 / 𝐵) ≤ (𝐶 / 𝐷))
Assertion
Ref Expression
ledivdivd (𝜑 → (𝐷 / 𝐶) ≤ (𝐵 / 𝐴))

Proof of Theorem ledivdivd
StepHypRef Expression
1 ledivdivd.5 . 2 (𝜑 → (𝐴 / 𝐵) ≤ (𝐶 / 𝐷))
2 rpred.1 . . . 4 (𝜑𝐴 ∈ ℝ+)
32rpregt0d 12776 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
4 rpaddcld.1 . . . 4 (𝜑𝐵 ∈ ℝ+)
54rpregt0d 12776 . . 3 (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
6 ltdiv2d.3 . . . 4 (𝜑𝐶 ∈ ℝ+)
76rpregt0d 12776 . . 3 (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
8 ledivdivd.4 . . . 4 (𝜑𝐷 ∈ ℝ+)
98rpregt0d 12776 . . 3 (𝜑 → (𝐷 ∈ ℝ ∧ 0 < 𝐷))
10 ledivdiv 11862 . . 3 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
113, 5, 7, 9, 10syl22anc 836 . 2 (𝜑 → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
121, 11mpbid 231 1 (𝜑 → (𝐷 / 𝐶) ≤ (𝐵 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5076  (class class class)co 7277  cr 10868  0cc0 10869   < clt 11007  cle 11008   / cdiv 11630  +crp 12728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5077  df-opab 5139  df-mpt 5160  df-id 5491  df-po 5505  df-so 5506  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-rp 12729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator