| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lemuldivd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| ltmul1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltmul1d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltmul1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| lemuldivd | ⊢ (𝜑 → ((𝐴 · 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 / 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltmul1d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | ltmul1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 4 | 3 | rpregt0d 13001 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
| 5 | lemuldiv 12063 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 / 𝐶))) | |
| 6 | 1, 2, 4, 5 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 · 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 / 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 · cmul 11073 < clt 11208 ≤ cle 11209 / cdiv 11835 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-rp 12952 |
| This theorem is referenced by: leexp2a 14137 bitsfzolem 16404 bitsfzo 16405 bitscmp 16408 gexexlem 19782 ovolsca 25416 abelthlem7 26348 cxpaddle 26662 divsqrtsumo1 26894 fsumharmonic 26922 lgamgulmlem5 26943 basellem8 26998 fsumvma2 27125 chpchtsum 27130 chpub 27131 logexprlim 27136 efexple 27192 chpchtlim 27390 rplogsumlem2 27396 dchrisum0lem1a 27397 dchrmusum2 27405 dchrvmasumlem2 27409 dchrisum0lem1 27427 mulog2sumlem2 27446 vmalogdivsum2 27449 2vmadivsumlem 27451 selberglem2 27457 chpdifbndlem1 27464 selberg3lem1 27468 selberg4lem1 27471 pntrlog2bndlem5 27492 pntlemh 27510 pntlemn 27511 pntlemr 27513 pntlemj 27514 ttgcontlem1 28812 logdivsqrle 34641 unbdqndv2lem2 36498 itg2addnclem2 37666 3lexlogpow5ineq5 42048 aks4d1p8 42075 aks6d1c2lem4 42115 fourierdlem64 46168 rehalfge1 47336 |
| Copyright terms: Public domain | W3C validator |