MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemuldivd Structured version   Visualization version   GIF version

Theorem lemuldivd 12206
Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (𝜑𝐴 ∈ ℝ)
ltmul1d.2 (𝜑𝐵 ∈ ℝ)
ltmul1d.3 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
lemuldivd (𝜑 → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))

Proof of Theorem lemuldivd
StepHypRef Expression
1 ltmul1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltmul1d.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ltmul1d.3 . . 3 (𝜑𝐶 ∈ ℝ+)
43rpregt0d 12163 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
5 lemuldiv 11234 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
61, 2, 4, 5syl3anc 1496 1 (𝜑 → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2166   class class class wbr 4874  (class class class)co 6906  cr 10252  0cc0 10253   · cmul 10258   < clt 10392  cle 10393   / cdiv 11010  +crp 12113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-po 5264  df-so 5265  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-rp 12114
This theorem is referenced by:  leexp2a  13211  bitsfzolem  15530  bitsfzo  15531  bitscmp  15534  gexexlem  18609  ovolsca  23682  abelthlem7  24592  cxpaddle  24896  divsqrtsumo1  25124  fsumharmonic  25152  lgamgulmlem5  25173  basellem8  25228  fsumvma2  25353  chpchtsum  25358  chpub  25359  logexprlim  25364  efexple  25420  chpchtlim  25582  rplogsumlem2  25588  dchrisum0lem1a  25589  dchrmusum2  25597  dchrvmasumlem2  25601  dchrisum0lem1  25619  mulog2sumlem2  25638  vmalogdivsum2  25641  2vmadivsumlem  25643  selberglem2  25649  chpdifbndlem1  25656  selberg3lem1  25660  selberg4lem1  25663  pntrlog2bndlem5  25684  pntlemh  25702  pntlemn  25703  pntlemr  25705  pntlemj  25706  ttgcontlem1  26185  logdivsqrle  31278  unbdqndv2lem2  33034  itg2addnclem2  34006  fourierdlem64  41182
  Copyright terms: Public domain W3C validator