MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdivmuld Structured version   Visualization version   GIF version

Theorem ltdivmuld 13099
Description: 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„)
ltmul1d.2 (๐œ‘ โ†’ ๐ต โˆˆ โ„)
ltmul1d.3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„+)
Assertion
Ref Expression
ltdivmuld (๐œ‘ โ†’ ((๐ด / ๐ถ) < ๐ต โ†” ๐ด < (๐ถ ยท ๐ต)))

Proof of Theorem ltdivmuld
StepHypRef Expression
1 ltmul1d.1 . 2 (๐œ‘ โ†’ ๐ด โˆˆ โ„)
2 ltmul1d.2 . 2 (๐œ‘ โ†’ ๐ต โˆˆ โ„)
3 ltmul1d.3 . . 3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„+)
43rpregt0d 13054 . 2 (๐œ‘ โ†’ (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ))
5 ltdivmul 12119 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 < ๐ถ)) โ†’ ((๐ด / ๐ถ) < ๐ต โ†” ๐ด < (๐ถ ยท ๐ต)))
61, 2, 4, 5syl3anc 1368 1 (๐œ‘ โ†’ ((๐ด / ๐ถ) < ๐ต โ†” ๐ด < (๐ถ ยท ๐ต)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 394   โˆˆ wcel 2098   class class class wbr 5143  (class class class)co 7416  โ„cr 11137  0cc0 11138   ยท cmul 11143   < clt 11278   / cdiv 11901  โ„+crp 13006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-rp 13007
This theorem is referenced by:  flhalf  13827  expmulnbnd  14229  reccn2  15573  o1rlimmul  15595  bitsfzolem  16408  bitsmod  16410  bitscmp  16412  bitsinv1lem  16415  nrginvrcnlem  24626  logdivlti  26572  logcnlem4  26597  logdiflbnd  26945  lgamcvg2  27005  ftalem1  27023  ftalem2  27024  bposlem2  27236  pntrlog2bndlem2  27529  pntrlog2bndlem4  27531  pntlemc  27546  pntlemb  27548  ostth3  27589  sinccvglem  35333  knoppndvlem18  36061  itg2addnclem2  37202  areacirclem1  37238  cvgdvgrat  43815  binomcxplemnotnn0  43858
  Copyright terms: Public domain W3C validator