MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdivmuld Structured version   Visualization version   GIF version

Theorem ltdivmuld 12477
Description: 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (𝜑𝐴 ∈ ℝ)
ltmul1d.2 (𝜑𝐵 ∈ ℝ)
ltmul1d.3 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
ltdivmuld (𝜑 → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐶 · 𝐵)))

Proof of Theorem ltdivmuld
StepHypRef Expression
1 ltmul1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltmul1d.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ltmul1d.3 . . 3 (𝜑𝐶 ∈ ℝ+)
43rpregt0d 12432 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
5 ltdivmul 11509 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐶 · 𝐵)))
61, 2, 4, 5syl3anc 1368 1 (𝜑 → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2115   class class class wbr 5053  (class class class)co 7146  cr 10530  0cc0 10531   · cmul 10536   < clt 10669   / cdiv 11291  +crp 12384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-rp 12385
This theorem is referenced by:  flhalf  13202  expmulnbnd  13599  reccn2  14951  o1rlimmul  14973  bitsfzolem  15779  bitsmod  15781  bitscmp  15783  bitsinv1lem  15786  nrginvrcnlem  23295  logdivlti  25209  logcnlem4  25234  logdiflbnd  25578  lgamcvg2  25638  ftalem1  25656  ftalem2  25657  bposlem2  25867  pntrlog2bndlem2  26160  pntrlog2bndlem4  26162  pntlemc  26177  pntlemb  26179  ostth3  26220  sinccvglem  32942  knoppndvlem18  33895  itg2addnclem2  35021  areacirclem1  35057  cvgdvgrat  40877  binomcxplemnotnn0  40920
  Copyright terms: Public domain W3C validator