MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdivmuld Structured version   Visualization version   GIF version

Theorem ltdivmuld 12925
Description: 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (𝜑𝐴 ∈ ℝ)
ltmul1d.2 (𝜑𝐵 ∈ ℝ)
ltmul1d.3 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
ltdivmuld (𝜑 → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐶 · 𝐵)))

Proof of Theorem ltdivmuld
StepHypRef Expression
1 ltmul1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltmul1d.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ltmul1d.3 . . 3 (𝜑𝐶 ∈ ℝ+)
43rpregt0d 12880 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
5 ltdivmul 11952 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐶 · 𝐵)))
61, 2, 4, 5syl3anc 1370 1 (𝜑 → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2105   class class class wbr 5093  (class class class)co 7338  cr 10972  0cc0 10973   · cmul 10978   < clt 11111   / cdiv 11734  +crp 12832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-po 5533  df-so 5534  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-er 8570  df-en 8806  df-dom 8807  df-sdom 8808  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-div 11735  df-rp 12833
This theorem is referenced by:  flhalf  13652  expmulnbnd  14052  reccn2  15406  o1rlimmul  15428  bitsfzolem  16241  bitsmod  16243  bitscmp  16245  bitsinv1lem  16248  nrginvrcnlem  23962  logdivlti  25882  logcnlem4  25907  logdiflbnd  26251  lgamcvg2  26311  ftalem1  26329  ftalem2  26330  bposlem2  26540  pntrlog2bndlem2  26833  pntrlog2bndlem4  26835  pntlemc  26850  pntlemb  26852  ostth3  26893  sinccvglem  33929  knoppndvlem18  34848  itg2addnclem2  35985  areacirclem1  36021  cvgdvgrat  42304  binomcxplemnotnn0  42347
  Copyright terms: Public domain W3C validator