MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoi Structured version   Visualization version   GIF version

Theorem nmoi 24632
Description: The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmoi ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))

Proof of Theorem nmoi
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6831 . . 3 (𝑋 = (0g𝑆) → (𝑀‘(𝐹𝑋)) = (𝑀‘(𝐹‘(0g𝑆))))
2 fveq2 6826 . . . 4 (𝑋 = (0g𝑆) → (𝐿𝑋) = (𝐿‘(0g𝑆)))
32oveq2d 7369 . . 3 (𝑋 = (0g𝑆) → ((𝑁𝐹) · (𝐿𝑋)) = ((𝑁𝐹) · (𝐿‘(0g𝑆))))
41, 3breq12d 5108 . 2 (𝑋 = (0g𝑆) → ((𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)) ↔ (𝑀‘(𝐹‘(0g𝑆))) ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆)))))
5 2fveq3 6831 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹𝑋)))
6 fveq2 6826 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐿𝑥) = (𝐿𝑋))
76oveq2d 7369 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑟 · (𝐿𝑥)) = (𝑟 · (𝐿𝑋)))
85, 7breq12d 5108 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
98rspcv 3575 . . . . . . 7 (𝑋𝑉 → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
109ad3antlr 731 . . . . . 6 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
11 nmofval.1 . . . . . . . . . . . . . 14 𝑁 = (𝑆 normOp 𝑇)
1211isnghm 24627 . . . . . . . . . . . . 13 (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
1312simplbi 497 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp))
1413adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp))
1514simprd 495 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑇 ∈ NrmGrp)
1612simprbi 496 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ))
1716adantr 480 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ))
1817simpld 494 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
19 nmoi.2 . . . . . . . . . . . . 13 𝑉 = (Base‘𝑆)
20 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
2119, 20ghmf 19117 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2218, 21syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝐹:𝑉⟶(Base‘𝑇))
23 ffvelcdm 7019 . . . . . . . . . . 11 ((𝐹:𝑉⟶(Base‘𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
2422, 23sylancom 588 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
25 nmoi.4 . . . . . . . . . . 11 𝑀 = (norm‘𝑇)
2620, 25nmcl 24520 . . . . . . . . . 10 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2715, 24, 26syl2anc 584 . . . . . . . . 9 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2827adantr 480 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2928adantr 480 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
30 elrege0 13375 . . . . . . . . 9 (𝑟 ∈ (0[,)+∞) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟))
3130simplbi 497 . . . . . . . 8 (𝑟 ∈ (0[,)+∞) → 𝑟 ∈ ℝ)
3231adantl 481 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → 𝑟 ∈ ℝ)
3314simpld 494 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑆 ∈ NrmGrp)
34 simpr 484 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑋𝑉)
3533, 34jca 511 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑆 ∈ NrmGrp ∧ 𝑋𝑉))
36 nmoi.3 . . . . . . . . . . . 12 𝐿 = (norm‘𝑆)
37 eqid 2729 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
3819, 36, 37nmrpcl 24524 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
39383expa 1118 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
4035, 39sylan 580 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
4140rpregt0d 12961 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋)))
4241adantr 480 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋)))
43 ledivmul2 12022 . . . . . . 7 (((𝑀‘(𝐹𝑋)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋))) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟 ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
4429, 32, 42, 43syl3anc 1373 . . . . . 6 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟 ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
4510, 44sylibrd 259 . . . . 5 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟))
4645ralrimiva 3121 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟))
4733adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝑆 ∈ NrmGrp)
4815adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝑇 ∈ NrmGrp)
4918adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5028, 40rerpdivcld 12986 . . . . . 6 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ)
5150rexrd 11184 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ*)
5211, 19, 36, 25nmogelb 24620 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ*) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟)))
5347, 48, 49, 51, 52syl31anc 1375 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟)))
5446, 53mpbird 257 . . 3 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹))
5517simprd 495 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑁𝐹) ∈ ℝ)
5655adantr 480 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑁𝐹) ∈ ℝ)
5728, 56, 40ledivmul2d 13009 . . 3 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋))))
5854, 57mpbid 232 . 2 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
59 eqid 2729 . . . . . . 7 (0g𝑇) = (0g𝑇)
6037, 59ghmid 19119 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
6118, 60syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹‘(0g𝑆)) = (0g𝑇))
6261fveq2d 6830 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
6325, 59nm0 24533 . . . . 5 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
6415, 63syl 17 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(0g𝑇)) = 0)
6562, 64eqtrd 2764 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
6636, 37nm0 24533 . . . . . 6 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
6733, 66syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) = 0)
68 0re 11136 . . . . 5 0 ∈ ℝ
6967, 68eqeltrdi 2836 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) ∈ ℝ)
7011nmoge0 24625 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
7133, 15, 18, 70syl3anc 1373 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ (𝑁𝐹))
72 0le0 12247 . . . . 5 0 ≤ 0
7372, 67breqtrrid 5133 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ (𝐿‘(0g𝑆)))
7455, 69, 71, 73mulge0d 11715 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆))))
7565, 74eqbrtrd 5117 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆))))
764, 58, 75pm2.61ne 3010 1 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5095  wf 6482  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028   · cmul 11033  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169   / cdiv 11795  +crp 12911  [,)cico 13268  Basecbs 17138  0gc0g 17361   GrpHom cghm 19109  normcnm 24480  NrmGrpcngp 24481   normOp cnmo 24609   NGHom cnghm 24610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ico 13272  df-0g 17363  df-topgen 17365  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-ghm 19110  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-xms 24224  df-ms 24225  df-nm 24486  df-ngp 24487  df-nmo 24612  df-nghm 24613
This theorem is referenced by:  nmoix  24633  nmoeq0  24640  nmoco  24641  nmotri  24643  nmoid  24646  nmods  24648
  Copyright terms: Public domain W3C validator