MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoi Structured version   Visualization version   GIF version

Theorem nmoi 23798
Description: The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmoi ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))

Proof of Theorem nmoi
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6761 . . 3 (𝑋 = (0g𝑆) → (𝑀‘(𝐹𝑋)) = (𝑀‘(𝐹‘(0g𝑆))))
2 fveq2 6756 . . . 4 (𝑋 = (0g𝑆) → (𝐿𝑋) = (𝐿‘(0g𝑆)))
32oveq2d 7271 . . 3 (𝑋 = (0g𝑆) → ((𝑁𝐹) · (𝐿𝑋)) = ((𝑁𝐹) · (𝐿‘(0g𝑆))))
41, 3breq12d 5083 . 2 (𝑋 = (0g𝑆) → ((𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)) ↔ (𝑀‘(𝐹‘(0g𝑆))) ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆)))))
5 2fveq3 6761 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹𝑋)))
6 fveq2 6756 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐿𝑥) = (𝐿𝑋))
76oveq2d 7271 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑟 · (𝐿𝑥)) = (𝑟 · (𝐿𝑋)))
85, 7breq12d 5083 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
98rspcv 3547 . . . . . . 7 (𝑋𝑉 → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
109ad3antlr 727 . . . . . 6 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
11 nmofval.1 . . . . . . . . . . . . . 14 𝑁 = (𝑆 normOp 𝑇)
1211isnghm 23793 . . . . . . . . . . . . 13 (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
1312simplbi 497 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp))
1413adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp))
1514simprd 495 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑇 ∈ NrmGrp)
1612simprbi 496 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ))
1716adantr 480 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ))
1817simpld 494 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
19 nmoi.2 . . . . . . . . . . . . 13 𝑉 = (Base‘𝑆)
20 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
2119, 20ghmf 18753 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2218, 21syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝐹:𝑉⟶(Base‘𝑇))
23 ffvelrn 6941 . . . . . . . . . . 11 ((𝐹:𝑉⟶(Base‘𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
2422, 23sylancom 587 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
25 nmoi.4 . . . . . . . . . . 11 𝑀 = (norm‘𝑇)
2620, 25nmcl 23678 . . . . . . . . . 10 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2715, 24, 26syl2anc 583 . . . . . . . . 9 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2827adantr 480 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2928adantr 480 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
30 elrege0 13115 . . . . . . . . 9 (𝑟 ∈ (0[,)+∞) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟))
3130simplbi 497 . . . . . . . 8 (𝑟 ∈ (0[,)+∞) → 𝑟 ∈ ℝ)
3231adantl 481 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → 𝑟 ∈ ℝ)
3314simpld 494 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑆 ∈ NrmGrp)
34 simpr 484 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑋𝑉)
3533, 34jca 511 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑆 ∈ NrmGrp ∧ 𝑋𝑉))
36 nmoi.3 . . . . . . . . . . . 12 𝐿 = (norm‘𝑆)
37 eqid 2738 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
3819, 36, 37nmrpcl 23682 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
39383expa 1116 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
4035, 39sylan 579 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
4140rpregt0d 12707 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋)))
4241adantr 480 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋)))
43 ledivmul2 11784 . . . . . . 7 (((𝑀‘(𝐹𝑋)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋))) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟 ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
4429, 32, 42, 43syl3anc 1369 . . . . . 6 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟 ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
4510, 44sylibrd 258 . . . . 5 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟))
4645ralrimiva 3107 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟))
4733adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝑆 ∈ NrmGrp)
4815adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝑇 ∈ NrmGrp)
4918adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5028, 40rerpdivcld 12732 . . . . . 6 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ)
5150rexrd 10956 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ*)
5211, 19, 36, 25nmogelb 23786 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ*) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟)))
5347, 48, 49, 51, 52syl31anc 1371 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟)))
5446, 53mpbird 256 . . 3 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹))
5517simprd 495 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑁𝐹) ∈ ℝ)
5655adantr 480 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑁𝐹) ∈ ℝ)
5728, 56, 40ledivmul2d 12755 . . 3 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋))))
5854, 57mpbid 231 . 2 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
59 eqid 2738 . . . . . . 7 (0g𝑇) = (0g𝑇)
6037, 59ghmid 18755 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
6118, 60syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹‘(0g𝑆)) = (0g𝑇))
6261fveq2d 6760 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
6325, 59nm0 23691 . . . . 5 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
6415, 63syl 17 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(0g𝑇)) = 0)
6562, 64eqtrd 2778 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
6636, 37nm0 23691 . . . . . 6 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
6733, 66syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) = 0)
68 0re 10908 . . . . 5 0 ∈ ℝ
6967, 68eqeltrdi 2847 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) ∈ ℝ)
7011nmoge0 23791 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
7133, 15, 18, 70syl3anc 1369 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ (𝑁𝐹))
72 0le0 12004 . . . . 5 0 ≤ 0
7372, 67breqtrrid 5108 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ (𝐿‘(0g𝑆)))
7455, 69, 71, 73mulge0d 11482 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆))))
7565, 74eqbrtrd 5092 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆))))
764, 58, 75pm2.61ne 3029 1 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941   / cdiv 11562  +crp 12659  [,)cico 13010  Basecbs 16840  0gc0g 17067   GrpHom cghm 18746  normcnm 23638  NrmGrpcngp 23639   normOp cnmo 23775   NGHom cnghm 23776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-0g 17069  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ghm 18747  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-xms 23381  df-ms 23382  df-nm 23644  df-ngp 23645  df-nmo 23778  df-nghm 23779
This theorem is referenced by:  nmoix  23799  nmoeq0  23806  nmoco  23807  nmotri  23809  nmoid  23812  nmods  23814
  Copyright terms: Public domain W3C validator