MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoi Structured version   Visualization version   GIF version

Theorem nmoi 24665
Description: The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmoi ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))

Proof of Theorem nmoi
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6880 . . 3 (𝑋 = (0g𝑆) → (𝑀‘(𝐹𝑋)) = (𝑀‘(𝐹‘(0g𝑆))))
2 fveq2 6875 . . . 4 (𝑋 = (0g𝑆) → (𝐿𝑋) = (𝐿‘(0g𝑆)))
32oveq2d 7419 . . 3 (𝑋 = (0g𝑆) → ((𝑁𝐹) · (𝐿𝑋)) = ((𝑁𝐹) · (𝐿‘(0g𝑆))))
41, 3breq12d 5132 . 2 (𝑋 = (0g𝑆) → ((𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)) ↔ (𝑀‘(𝐹‘(0g𝑆))) ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆)))))
5 2fveq3 6880 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹𝑋)))
6 fveq2 6875 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐿𝑥) = (𝐿𝑋))
76oveq2d 7419 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑟 · (𝐿𝑥)) = (𝑟 · (𝐿𝑋)))
85, 7breq12d 5132 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
98rspcv 3597 . . . . . . 7 (𝑋𝑉 → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
109ad3antlr 731 . . . . . 6 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
11 nmofval.1 . . . . . . . . . . . . . 14 𝑁 = (𝑆 normOp 𝑇)
1211isnghm 24660 . . . . . . . . . . . . 13 (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
1312simplbi 497 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp))
1413adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp))
1514simprd 495 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑇 ∈ NrmGrp)
1612simprbi 496 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ))
1716adantr 480 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ))
1817simpld 494 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
19 nmoi.2 . . . . . . . . . . . . 13 𝑉 = (Base‘𝑆)
20 eqid 2735 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
2119, 20ghmf 19201 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2218, 21syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝐹:𝑉⟶(Base‘𝑇))
23 ffvelcdm 7070 . . . . . . . . . . 11 ((𝐹:𝑉⟶(Base‘𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
2422, 23sylancom 588 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
25 nmoi.4 . . . . . . . . . . 11 𝑀 = (norm‘𝑇)
2620, 25nmcl 24553 . . . . . . . . . 10 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2715, 24, 26syl2anc 584 . . . . . . . . 9 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2827adantr 480 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2928adantr 480 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
30 elrege0 13469 . . . . . . . . 9 (𝑟 ∈ (0[,)+∞) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟))
3130simplbi 497 . . . . . . . 8 (𝑟 ∈ (0[,)+∞) → 𝑟 ∈ ℝ)
3231adantl 481 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → 𝑟 ∈ ℝ)
3314simpld 494 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑆 ∈ NrmGrp)
34 simpr 484 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑋𝑉)
3533, 34jca 511 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑆 ∈ NrmGrp ∧ 𝑋𝑉))
36 nmoi.3 . . . . . . . . . . . 12 𝐿 = (norm‘𝑆)
37 eqid 2735 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
3819, 36, 37nmrpcl 24557 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
39383expa 1118 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
4035, 39sylan 580 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
4140rpregt0d 13055 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋)))
4241adantr 480 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋)))
43 ledivmul2 12119 . . . . . . 7 (((𝑀‘(𝐹𝑋)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋))) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟 ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
4429, 32, 42, 43syl3anc 1373 . . . . . 6 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟 ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
4510, 44sylibrd 259 . . . . 5 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟))
4645ralrimiva 3132 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟))
4733adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝑆 ∈ NrmGrp)
4815adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝑇 ∈ NrmGrp)
4918adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5028, 40rerpdivcld 13080 . . . . . 6 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ)
5150rexrd 11283 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ*)
5211, 19, 36, 25nmogelb 24653 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ*) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟)))
5347, 48, 49, 51, 52syl31anc 1375 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟)))
5446, 53mpbird 257 . . 3 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹))
5517simprd 495 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑁𝐹) ∈ ℝ)
5655adantr 480 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑁𝐹) ∈ ℝ)
5728, 56, 40ledivmul2d 13103 . . 3 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋))))
5854, 57mpbid 232 . 2 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
59 eqid 2735 . . . . . . 7 (0g𝑇) = (0g𝑇)
6037, 59ghmid 19203 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
6118, 60syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹‘(0g𝑆)) = (0g𝑇))
6261fveq2d 6879 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
6325, 59nm0 24566 . . . . 5 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
6415, 63syl 17 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(0g𝑇)) = 0)
6562, 64eqtrd 2770 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
6636, 37nm0 24566 . . . . . 6 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
6733, 66syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) = 0)
68 0re 11235 . . . . 5 0 ∈ ℝ
6967, 68eqeltrdi 2842 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) ∈ ℝ)
7011nmoge0 24658 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
7133, 15, 18, 70syl3anc 1373 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ (𝑁𝐹))
72 0le0 12339 . . . . 5 0 ≤ 0
7372, 67breqtrrid 5157 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ (𝐿‘(0g𝑆)))
7455, 69, 71, 73mulge0d 11812 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆))))
7565, 74eqbrtrd 5141 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆))))
764, 58, 75pm2.61ne 3017 1 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051   class class class wbr 5119  wf 6526  cfv 6530  (class class class)co 7403  cr 11126  0cc0 11127   · cmul 11132  +∞cpnf 11264  *cxr 11266   < clt 11267  cle 11268   / cdiv 11892  +crp 13006  [,)cico 13362  Basecbs 17226  0gc0g 17451   GrpHom cghm 19193  normcnm 24513  NrmGrpcngp 24514   normOp cnmo 24642   NGHom cnghm 24643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ico 13366  df-0g 17453  df-topgen 17455  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-ghm 19194  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-xms 24257  df-ms 24258  df-nm 24519  df-ngp 24520  df-nmo 24645  df-nghm 24646
This theorem is referenced by:  nmoix  24666  nmoeq0  24673  nmoco  24674  nmotri  24676  nmoid  24679  nmods  24681
  Copyright terms: Public domain W3C validator