MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoi Structured version   Visualization version   GIF version

Theorem nmoi 24092
Description: The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmoi ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))

Proof of Theorem nmoi
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6847 . . 3 (𝑋 = (0g𝑆) → (𝑀‘(𝐹𝑋)) = (𝑀‘(𝐹‘(0g𝑆))))
2 fveq2 6842 . . . 4 (𝑋 = (0g𝑆) → (𝐿𝑋) = (𝐿‘(0g𝑆)))
32oveq2d 7373 . . 3 (𝑋 = (0g𝑆) → ((𝑁𝐹) · (𝐿𝑋)) = ((𝑁𝐹) · (𝐿‘(0g𝑆))))
41, 3breq12d 5118 . 2 (𝑋 = (0g𝑆) → ((𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)) ↔ (𝑀‘(𝐹‘(0g𝑆))) ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆)))))
5 2fveq3 6847 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹𝑋)))
6 fveq2 6842 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐿𝑥) = (𝐿𝑋))
76oveq2d 7373 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑟 · (𝐿𝑥)) = (𝑟 · (𝐿𝑋)))
85, 7breq12d 5118 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
98rspcv 3577 . . . . . . 7 (𝑋𝑉 → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
109ad3antlr 729 . . . . . 6 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
11 nmofval.1 . . . . . . . . . . . . . 14 𝑁 = (𝑆 normOp 𝑇)
1211isnghm 24087 . . . . . . . . . . . . 13 (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
1312simplbi 498 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp))
1413adantr 481 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp))
1514simprd 496 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑇 ∈ NrmGrp)
1612simprbi 497 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ))
1716adantr 481 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ))
1817simpld 495 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
19 nmoi.2 . . . . . . . . . . . . 13 𝑉 = (Base‘𝑆)
20 eqid 2736 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
2119, 20ghmf 19012 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2218, 21syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝐹:𝑉⟶(Base‘𝑇))
23 ffvelcdm 7032 . . . . . . . . . . 11 ((𝐹:𝑉⟶(Base‘𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
2422, 23sylancom 588 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
25 nmoi.4 . . . . . . . . . . 11 𝑀 = (norm‘𝑇)
2620, 25nmcl 23972 . . . . . . . . . 10 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2715, 24, 26syl2anc 584 . . . . . . . . 9 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2827adantr 481 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2928adantr 481 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
30 elrege0 13371 . . . . . . . . 9 (𝑟 ∈ (0[,)+∞) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟))
3130simplbi 498 . . . . . . . 8 (𝑟 ∈ (0[,)+∞) → 𝑟 ∈ ℝ)
3231adantl 482 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → 𝑟 ∈ ℝ)
3314simpld 495 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑆 ∈ NrmGrp)
34 simpr 485 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑋𝑉)
3533, 34jca 512 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑆 ∈ NrmGrp ∧ 𝑋𝑉))
36 nmoi.3 . . . . . . . . . . . 12 𝐿 = (norm‘𝑆)
37 eqid 2736 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
3819, 36, 37nmrpcl 23976 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
39383expa 1118 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
4035, 39sylan 580 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
4140rpregt0d 12963 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋)))
4241adantr 481 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋)))
43 ledivmul2 12034 . . . . . . 7 (((𝑀‘(𝐹𝑋)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋))) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟 ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
4429, 32, 42, 43syl3anc 1371 . . . . . 6 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟 ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
4510, 44sylibrd 258 . . . . 5 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟))
4645ralrimiva 3143 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟))
4733adantr 481 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝑆 ∈ NrmGrp)
4815adantr 481 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝑇 ∈ NrmGrp)
4918adantr 481 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5028, 40rerpdivcld 12988 . . . . . 6 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ)
5150rexrd 11205 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ*)
5211, 19, 36, 25nmogelb 24080 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ*) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟)))
5347, 48, 49, 51, 52syl31anc 1373 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟)))
5446, 53mpbird 256 . . 3 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹))
5517simprd 496 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑁𝐹) ∈ ℝ)
5655adantr 481 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑁𝐹) ∈ ℝ)
5728, 56, 40ledivmul2d 13011 . . 3 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋))))
5854, 57mpbid 231 . 2 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
59 eqid 2736 . . . . . . 7 (0g𝑇) = (0g𝑇)
6037, 59ghmid 19014 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
6118, 60syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹‘(0g𝑆)) = (0g𝑇))
6261fveq2d 6846 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
6325, 59nm0 23985 . . . . 5 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
6415, 63syl 17 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(0g𝑇)) = 0)
6562, 64eqtrd 2776 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
6636, 37nm0 23985 . . . . . 6 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
6733, 66syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) = 0)
68 0re 11157 . . . . 5 0 ∈ ℝ
6967, 68eqeltrdi 2846 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) ∈ ℝ)
7011nmoge0 24085 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
7133, 15, 18, 70syl3anc 1371 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ (𝑁𝐹))
72 0le0 12254 . . . . 5 0 ≤ 0
7372, 67breqtrrid 5143 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ (𝐿‘(0g𝑆)))
7455, 69, 71, 73mulge0d 11732 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆))))
7565, 74eqbrtrd 5127 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆))))
764, 58, 75pm2.61ne 3030 1 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051   · cmul 11056  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190   / cdiv 11812  +crp 12915  [,)cico 13266  Basecbs 17083  0gc0g 17321   GrpHom cghm 19005  normcnm 23932  NrmGrpcngp 23933   normOp cnmo 24069   NGHom cnghm 24070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-0g 17323  df-topgen 17325  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-ghm 19006  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-xms 23673  df-ms 23674  df-nm 23938  df-ngp 23939  df-nmo 24072  df-nghm 24073
This theorem is referenced by:  nmoix  24093  nmoeq0  24100  nmoco  24101  nmotri  24103  nmoid  24106  nmods  24108
  Copyright terms: Public domain W3C validator