Step | Hyp | Ref
| Expression |
1 | | 2fveq3 6722 |
. . 3
⊢ (𝑋 = (0g‘𝑆) → (𝑀‘(𝐹‘𝑋)) = (𝑀‘(𝐹‘(0g‘𝑆)))) |
2 | | fveq2 6717 |
. . . 4
⊢ (𝑋 = (0g‘𝑆) → (𝐿‘𝑋) = (𝐿‘(0g‘𝑆))) |
3 | 2 | oveq2d 7229 |
. . 3
⊢ (𝑋 = (0g‘𝑆) → ((𝑁‘𝐹) · (𝐿‘𝑋)) = ((𝑁‘𝐹) · (𝐿‘(0g‘𝑆)))) |
4 | 1, 3 | breq12d 5066 |
. 2
⊢ (𝑋 = (0g‘𝑆) → ((𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) · (𝐿‘𝑋)) ↔ (𝑀‘(𝐹‘(0g‘𝑆))) ≤ ((𝑁‘𝐹) · (𝐿‘(0g‘𝑆))))) |
5 | | 2fveq3 6722 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑀‘(𝐹‘𝑥)) = (𝑀‘(𝐹‘𝑋))) |
6 | | fveq2 6717 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝐿‘𝑥) = (𝐿‘𝑋)) |
7 | 6 | oveq2d 7229 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑟 · (𝐿‘𝑥)) = (𝑟 · (𝐿‘𝑋))) |
8 | 5, 7 | breq12d 5066 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) ↔ (𝑀‘(𝐹‘𝑋)) ≤ (𝑟 · (𝐿‘𝑋)))) |
9 | 8 | rspcv 3532 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → (𝑀‘(𝐹‘𝑋)) ≤ (𝑟 · (𝐿‘𝑋)))) |
10 | 9 | ad3antlr 731 |
. . . . . 6
⊢ ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → (𝑀‘(𝐹‘𝑋)) ≤ (𝑟 · (𝐿‘𝑋)))) |
11 | | nmofval.1 |
. . . . . . . . . . . . . 14
⊢ 𝑁 = (𝑆 normOp 𝑇) |
12 | 11 | isnghm 23621 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ))) |
13 | 12 | simplbi 501 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp)) |
14 | 13 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp)) |
15 | 14 | simprd 499 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → 𝑇 ∈ NrmGrp) |
16 | 12 | simprbi 500 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ)) |
17 | 16 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁‘𝐹) ∈ ℝ)) |
18 | 17 | simpld 498 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
19 | | nmoi.2 |
. . . . . . . . . . . . 13
⊢ 𝑉 = (Base‘𝑆) |
20 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑇) =
(Base‘𝑇) |
21 | 19, 20 | ghmf 18626 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇)) |
22 | 18, 21 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → 𝐹:𝑉⟶(Base‘𝑇)) |
23 | | ffvelrn 6902 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑉⟶(Base‘𝑇) ∧ 𝑋 ∈ 𝑉) → (𝐹‘𝑋) ∈ (Base‘𝑇)) |
24 | 22, 23 | sylancom 591 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝐹‘𝑋) ∈ (Base‘𝑇)) |
25 | | nmoi.4 |
. . . . . . . . . . 11
⊢ 𝑀 = (norm‘𝑇) |
26 | 20, 25 | nmcl 23514 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹‘𝑋)) ∈ ℝ) |
27 | 15, 24, 26 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘𝑋)) ∈ ℝ) |
28 | 27 | adantr 484 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → (𝑀‘(𝐹‘𝑋)) ∈ ℝ) |
29 | 28 | adantr 484 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (𝑀‘(𝐹‘𝑋)) ∈ ℝ) |
30 | | elrege0 13042 |
. . . . . . . . 9
⊢ (𝑟 ∈ (0[,)+∞) ↔
(𝑟 ∈ ℝ ∧ 0
≤ 𝑟)) |
31 | 30 | simplbi 501 |
. . . . . . . 8
⊢ (𝑟 ∈ (0[,)+∞) →
𝑟 ∈
ℝ) |
32 | 31 | adantl 485 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → 𝑟 ∈
ℝ) |
33 | 14 | simpld 498 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → 𝑆 ∈ NrmGrp) |
34 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
35 | 33, 34 | jca 515 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉)) |
36 | | nmoi.3 |
. . . . . . . . . . . 12
⊢ 𝐿 = (norm‘𝑆) |
37 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(0g‘𝑆) = (0g‘𝑆) |
38 | 19, 36, 37 | nmrpcl 23518 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ (0g‘𝑆)) → (𝐿‘𝑋) ∈
ℝ+) |
39 | 38 | 3expa 1120 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → (𝐿‘𝑋) ∈
ℝ+) |
40 | 35, 39 | sylan 583 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → (𝐿‘𝑋) ∈
ℝ+) |
41 | 40 | rpregt0d 12634 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → ((𝐿‘𝑋) ∈ ℝ ∧ 0 < (𝐿‘𝑋))) |
42 | 41 | adantr 484 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → ((𝐿‘𝑋) ∈ ℝ ∧ 0 < (𝐿‘𝑋))) |
43 | | ledivmul2 11711 |
. . . . . . 7
⊢ (((𝑀‘(𝐹‘𝑋)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ ((𝐿‘𝑋) ∈ ℝ ∧ 0 < (𝐿‘𝑋))) → (((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ 𝑟 ↔ (𝑀‘(𝐹‘𝑋)) ≤ (𝑟 · (𝐿‘𝑋)))) |
44 | 29, 32, 42, 43 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ 𝑟 ↔ (𝑀‘(𝐹‘𝑋)) ≤ (𝑟 · (𝐿‘𝑋)))) |
45 | 10, 44 | sylibrd 262 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ 𝑟)) |
46 | 45 | ralrimiva 3105 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ 𝑟)) |
47 | 33 | adantr 484 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → 𝑆 ∈ NrmGrp) |
48 | 15 | adantr 484 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → 𝑇 ∈ NrmGrp) |
49 | 18 | adantr 484 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
50 | 28, 40 | rerpdivcld 12659 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ∈ ℝ) |
51 | 50 | rexrd 10883 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ∈
ℝ*) |
52 | 11, 19, 36, 25 | nmogelb 23614 |
. . . . 5
⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ∈ ℝ*) →
(((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ (𝑁‘𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ 𝑟))) |
53 | 47, 48, 49, 51, 52 | syl31anc 1375 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → (((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ (𝑁‘𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ 𝑟))) |
54 | 46, 53 | mpbird 260 |
. . 3
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → ((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ (𝑁‘𝐹)) |
55 | 17 | simprd 499 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝑁‘𝐹) ∈ ℝ) |
56 | 55 | adantr 484 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → (𝑁‘𝐹) ∈ ℝ) |
57 | 28, 56, 40 | ledivmul2d 12682 |
. . 3
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → (((𝑀‘(𝐹‘𝑋)) / (𝐿‘𝑋)) ≤ (𝑁‘𝐹) ↔ (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) · (𝐿‘𝑋)))) |
58 | 54, 57 | mpbid 235 |
. 2
⊢ (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) ∧ 𝑋 ≠ (0g‘𝑆)) → (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) · (𝐿‘𝑋))) |
59 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝑇) = (0g‘𝑇) |
60 | 37, 59 | ghmid 18628 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
61 | 18, 60 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
62 | 61 | fveq2d 6721 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘(0g‘𝑆))) = (𝑀‘(0g‘𝑇))) |
63 | 25, 59 | nm0 23527 |
. . . . 5
⊢ (𝑇 ∈ NrmGrp → (𝑀‘(0g‘𝑇)) = 0) |
64 | 15, 63 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(0g‘𝑇)) = 0) |
65 | 62, 64 | eqtrd 2777 |
. . 3
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘(0g‘𝑆))) = 0) |
66 | 36, 37 | nm0 23527 |
. . . . . 6
⊢ (𝑆 ∈ NrmGrp → (𝐿‘(0g‘𝑆)) = 0) |
67 | 33, 66 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝐿‘(0g‘𝑆)) = 0) |
68 | | 0re 10835 |
. . . . 5
⊢ 0 ∈
ℝ |
69 | 67, 68 | eqeltrdi 2846 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝐿‘(0g‘𝑆)) ∈
ℝ) |
70 | 11 | nmoge0 23619 |
. . . . 5
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘𝐹)) |
71 | 33, 15, 18, 70 | syl3anc 1373 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → 0 ≤ (𝑁‘𝐹)) |
72 | | 0le0 11931 |
. . . . 5
⊢ 0 ≤
0 |
73 | 72, 67 | breqtrrid 5091 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → 0 ≤ (𝐿‘(0g‘𝑆))) |
74 | 55, 69, 71, 73 | mulge0d 11409 |
. . 3
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → 0 ≤ ((𝑁‘𝐹) · (𝐿‘(0g‘𝑆)))) |
75 | 65, 74 | eqbrtrd 5075 |
. 2
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘(0g‘𝑆))) ≤ ((𝑁‘𝐹) · (𝐿‘(0g‘𝑆)))) |
76 | 4, 58, 75 | pm2.61ne 3027 |
1
⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝐹‘𝑋)) ≤ ((𝑁‘𝐹) · (𝐿‘𝑋))) |