MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoi Structured version   Visualization version   GIF version

Theorem nmoi 24764
Description: The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmoi ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))

Proof of Theorem nmoi
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6911 . . 3 (𝑋 = (0g𝑆) → (𝑀‘(𝐹𝑋)) = (𝑀‘(𝐹‘(0g𝑆))))
2 fveq2 6906 . . . 4 (𝑋 = (0g𝑆) → (𝐿𝑋) = (𝐿‘(0g𝑆)))
32oveq2d 7446 . . 3 (𝑋 = (0g𝑆) → ((𝑁𝐹) · (𝐿𝑋)) = ((𝑁𝐹) · (𝐿‘(0g𝑆))))
41, 3breq12d 5160 . 2 (𝑋 = (0g𝑆) → ((𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)) ↔ (𝑀‘(𝐹‘(0g𝑆))) ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆)))))
5 2fveq3 6911 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀‘(𝐹𝑥)) = (𝑀‘(𝐹𝑋)))
6 fveq2 6906 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐿𝑥) = (𝐿𝑋))
76oveq2d 7446 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑟 · (𝐿𝑥)) = (𝑟 · (𝐿𝑋)))
85, 7breq12d 5160 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
98rspcv 3617 . . . . . . 7 (𝑋𝑉 → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
109ad3antlr 731 . . . . . 6 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
11 nmofval.1 . . . . . . . . . . . . . 14 𝑁 = (𝑆 normOp 𝑇)
1211isnghm 24759 . . . . . . . . . . . . 13 (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ)))
1312simplbi 497 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp))
1413adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp))
1514simprd 495 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑇 ∈ NrmGrp)
1612simprbi 496 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ))
1716adantr 480 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑁𝐹) ∈ ℝ))
1817simpld 494 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
19 nmoi.2 . . . . . . . . . . . . 13 𝑉 = (Base‘𝑆)
20 eqid 2734 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
2119, 20ghmf 19250 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2218, 21syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝐹:𝑉⟶(Base‘𝑇))
23 ffvelcdm 7100 . . . . . . . . . . 11 ((𝐹:𝑉⟶(Base‘𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
2422, 23sylancom 588 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
25 nmoi.4 . . . . . . . . . . 11 𝑀 = (norm‘𝑇)
2620, 25nmcl 24644 . . . . . . . . . 10 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2715, 24, 26syl2anc 584 . . . . . . . . 9 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2827adantr 480 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2928adantr 480 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
30 elrege0 13490 . . . . . . . . 9 (𝑟 ∈ (0[,)+∞) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟))
3130simplbi 497 . . . . . . . 8 (𝑟 ∈ (0[,)+∞) → 𝑟 ∈ ℝ)
3231adantl 481 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → 𝑟 ∈ ℝ)
3314simpld 494 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑆 ∈ NrmGrp)
34 simpr 484 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 𝑋𝑉)
3533, 34jca 511 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑆 ∈ NrmGrp ∧ 𝑋𝑉))
36 nmoi.3 . . . . . . . . . . . 12 𝐿 = (norm‘𝑆)
37 eqid 2734 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
3819, 36, 37nmrpcl 24648 . . . . . . . . . . 11 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
39383expa 1117 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
4035, 39sylan 580 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
4140rpregt0d 13080 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋)))
4241adantr 480 . . . . . . 7 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋)))
43 ledivmul2 12144 . . . . . . 7 (((𝑀‘(𝐹𝑋)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ ((𝐿𝑋) ∈ ℝ ∧ 0 < (𝐿𝑋))) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟 ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
4429, 32, 42, 43syl3anc 1370 . . . . . 6 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟 ↔ (𝑀‘(𝐹𝑋)) ≤ (𝑟 · (𝐿𝑋))))
4510, 44sylibrd 259 . . . . 5 ((((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) ∧ 𝑟 ∈ (0[,)+∞)) → (∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟))
4645ralrimiva 3143 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟))
4733adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝑆 ∈ NrmGrp)
4815adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝑇 ∈ NrmGrp)
4918adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5028, 40rerpdivcld 13105 . . . . . 6 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ)
5150rexrd 11308 . . . . 5 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ*)
5211, 19, 36, 25nmogelb 24752 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ∈ ℝ*) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟)))
5347, 48, 49, 51, 52syl31anc 1372 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ 𝑟)))
5446, 53mpbird 257 . . 3 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → ((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹))
5517simprd 495 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑁𝐹) ∈ ℝ)
5655adantr 480 . . . 4 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑁𝐹) ∈ ℝ)
5728, 56, 40ledivmul2d 13128 . . 3 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (((𝑀‘(𝐹𝑋)) / (𝐿𝑋)) ≤ (𝑁𝐹) ↔ (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋))))
5854, 57mpbid 232 . 2 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
59 eqid 2734 . . . . . . 7 (0g𝑇) = (0g𝑇)
6037, 59ghmid 19252 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
6118, 60syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐹‘(0g𝑆)) = (0g𝑇))
6261fveq2d 6910 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
6325, 59nm0 24657 . . . . 5 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
6415, 63syl 17 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(0g𝑇)) = 0)
6562, 64eqtrd 2774 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
6636, 37nm0 24657 . . . . . 6 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
6733, 66syl 17 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) = 0)
68 0re 11260 . . . . 5 0 ∈ ℝ
6967, 68eqeltrdi 2846 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) ∈ ℝ)
7011nmoge0 24757 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
7133, 15, 18, 70syl3anc 1370 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ (𝑁𝐹))
72 0le0 12364 . . . . 5 0 ≤ 0
7372, 67breqtrrid 5185 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ (𝐿‘(0g𝑆)))
7455, 69, 71, 73mulge0d 11837 . . 3 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → 0 ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆))))
7565, 74eqbrtrd 5169 . 2 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) ≤ ((𝑁𝐹) · (𝐿‘(0g𝑆))))
764, 58, 75pm2.61ne 3024 1 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058   class class class wbr 5147  wf 6558  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152   · cmul 11157  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293   / cdiv 11917  +crp 13031  [,)cico 13385  Basecbs 17244  0gc0g 17485   GrpHom cghm 19242  normcnm 24604  NrmGrpcngp 24605   normOp cnmo 24741   NGHom cnghm 24742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ico 13389  df-0g 17487  df-topgen 17489  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-ghm 19243  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-xms 24345  df-ms 24346  df-nm 24610  df-ngp 24611  df-nmo 24744  df-nghm 24745
This theorem is referenced by:  nmoix  24765  nmoeq0  24772  nmoco  24773  nmotri  24775  nmoid  24778  nmods  24780
  Copyright terms: Public domain W3C validator