Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpred | Structured version Visualization version GIF version |
Description: A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpred | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 12666 | . 2 ⊢ ℝ+ ⊆ ℝ | |
2 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
3 | 1, 2 | sselid 3915 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Copyright terms: Public domain | W3C validator |