| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpred | Structured version Visualization version GIF version | ||
| Description: A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpred | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpssre 13025 | . 2 ⊢ ℝ+ ⊆ ℝ | |
| 2 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 3 | 1, 2 | sselid 3963 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Copyright terms: Public domain | W3C validator |