Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltdiv23d | Structured version Visualization version GIF version |
Description: Swap denominator with other side of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltdiv23d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltdiv23d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
ltdiv23d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
ltdiv23d.4 | ⊢ (𝜑 → (𝐴 / 𝐵) < 𝐶) |
Ref | Expression |
---|---|
ltdiv23d | ⊢ (𝜑 → (𝐴 / 𝐶) < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltdiv23d.4 | . 2 ⊢ (𝜑 → (𝐴 / 𝐵) < 𝐶) | |
2 | ltdiv23d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltdiv23d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
4 | 3 | rpregt0d 12884 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
5 | ltdiv23d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
6 | 5 | rpregt0d 12884 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
7 | ltdiv23 11972 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) | |
8 | 2, 4, 6, 7 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
9 | 1, 8 | mpbid 231 | 1 ⊢ (𝜑 → (𝐴 / 𝐶) < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2106 class class class wbr 5097 (class class class)co 7342 ℝcr 10976 0cc0 10977 < clt 11115 / cdiv 11738 ℝ+crp 12836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-po 5537 df-so 5538 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-rp 12837 |
This theorem is referenced by: pntpbnd1a 26839 pntlemc 26849 smcnlem 29347 aks4d1p5 40391 binomcxplemnotnn0 42345 0ellimcdiv 43576 sinaover2ne0 43795 fourierdlem30 44064 |
Copyright terms: Public domain | W3C validator |