| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrisum0lem1a | Structured version Visualization version GIF version | ||
| Description: Lemma for dchrisum0lem1 27463. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| dchrisum0lem1a | ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn 13559 | . . . . . . 7 ⊢ (𝐷 ∈ (1...(⌊‘𝑋)) → 𝐷 ∈ ℕ) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℕ) |
| 3 | 2 | nnred 12247 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ) |
| 4 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+) | |
| 5 | 4 | rpregt0d 13049 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋 ∈ ℝ ∧ 0 < 𝑋)) |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ∈ ℝ ∧ 0 < 𝑋)) |
| 7 | 6 | simpld 494 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ) |
| 8 | 4 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ+) |
| 9 | 8 | rpge0d 13047 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 0 ≤ 𝑋) |
| 10 | 4 | rpred 13043 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ) |
| 11 | fznnfl 13868 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷 ≤ 𝑋))) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷 ≤ 𝑋))) |
| 13 | 12 | simplbda 499 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ≤ 𝑋) |
| 14 | 3, 7, 7, 9, 13 | lemul2ad 12174 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋 · 𝑋)) |
| 15 | rpcn 13011 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ+ → 𝑋 ∈ ℂ) | |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ) |
| 17 | 16 | sqvald 14150 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) = (𝑋 · 𝑋)) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) = (𝑋 · 𝑋)) |
| 19 | 14, 18 | breqtrrd 5144 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋↑2)) |
| 20 | 2z 12616 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 21 | rpexpcl 14087 | . . . . . . 7 ⊢ ((𝑋 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑋↑2) ∈ ℝ+) | |
| 22 | 4, 20, 21 | sylancl 586 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ+) |
| 23 | 22 | rpred 13043 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) ∈ ℝ) |
| 25 | 2 | nnrpd 13041 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ+) |
| 26 | 7, 24, 25 | lemuldivd 13092 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋 · 𝐷) ≤ (𝑋↑2) ↔ 𝑋 ≤ ((𝑋↑2) / 𝐷))) |
| 27 | 19, 26 | mpbid 232 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ≤ ((𝑋↑2) / 𝐷)) |
| 28 | nndivre 12273 | . . . 4 ⊢ (((𝑋↑2) ∈ ℝ ∧ 𝐷 ∈ ℕ) → ((𝑋↑2) / 𝐷) ∈ ℝ) | |
| 29 | 23, 1, 28 | syl2an 596 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋↑2) / 𝐷) ∈ ℝ) |
| 30 | flword2 13819 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ ((𝑋↑2) / 𝐷) ∈ ℝ ∧ 𝑋 ≤ ((𝑋↑2) / 𝐷)) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋))) | |
| 31 | 7, 29, 27, 30 | syl3anc 1372 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋))) |
| 32 | 27, 31 | jca 511 | 1 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5116 ‘cfv 6527 (class class class)co 7399 ℂcc 11119 ℝcr 11120 0cc0 11121 1c1 11122 · cmul 11126 < clt 11261 ≤ cle 11262 / cdiv 11886 ℕcn 12232 2c2 12287 ℤcz 12580 ℤ≥cuz 12844 ℝ+crp 13000 ...cfz 13513 ⌊cfl 13796 ↑cexp 14068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9448 df-inf 9449 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-n0 12494 df-z 12581 df-uz 12845 df-rp 13001 df-fz 13514 df-fl 13798 df-seq 14009 df-exp 14069 |
| This theorem is referenced by: dchrisum0lem1b 27462 dchrisum0lem1 27463 |
| Copyright terms: Public domain | W3C validator |