![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum0lem1a | Structured version Visualization version GIF version |
Description: Lemma for dchrisum0lem1 26999. (Contributed by Mario Carneiro, 7-Jun-2016.) |
Ref | Expression |
---|---|
dchrisum0lem1a | ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznn 13526 | . . . . . . 7 ⊢ (𝐷 ∈ (1...(⌊‘𝑋)) → 𝐷 ∈ ℕ) | |
2 | 1 | adantl 483 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℕ) |
3 | 2 | nnred 12223 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ) |
4 | simpr 486 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+) | |
5 | 4 | rpregt0d 13018 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋 ∈ ℝ ∧ 0 < 𝑋)) |
6 | 5 | adantr 482 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ∈ ℝ ∧ 0 < 𝑋)) |
7 | 6 | simpld 496 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ) |
8 | 4 | adantr 482 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ+) |
9 | 8 | rpge0d 13016 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 0 ≤ 𝑋) |
10 | 4 | rpred 13012 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ) |
11 | fznnfl 13823 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷 ≤ 𝑋))) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷 ≤ 𝑋))) |
13 | 12 | simplbda 501 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ≤ 𝑋) |
14 | 3, 7, 7, 9, 13 | lemul2ad 12150 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋 · 𝑋)) |
15 | rpcn 12980 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ+ → 𝑋 ∈ ℂ) | |
16 | 15 | adantl 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ) |
17 | 16 | sqvald 14104 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) = (𝑋 · 𝑋)) |
18 | 17 | adantr 482 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) = (𝑋 · 𝑋)) |
19 | 14, 18 | breqtrrd 5175 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋↑2)) |
20 | 2z 12590 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
21 | rpexpcl 14042 | . . . . . . 7 ⊢ ((𝑋 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑋↑2) ∈ ℝ+) | |
22 | 4, 20, 21 | sylancl 587 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ+) |
23 | 22 | rpred 13012 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ) |
24 | 23 | adantr 482 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) ∈ ℝ) |
25 | 2 | nnrpd 13010 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ+) |
26 | 7, 24, 25 | lemuldivd 13061 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋 · 𝐷) ≤ (𝑋↑2) ↔ 𝑋 ≤ ((𝑋↑2) / 𝐷))) |
27 | 19, 26 | mpbid 231 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ≤ ((𝑋↑2) / 𝐷)) |
28 | nndivre 12249 | . . . 4 ⊢ (((𝑋↑2) ∈ ℝ ∧ 𝐷 ∈ ℕ) → ((𝑋↑2) / 𝐷) ∈ ℝ) | |
29 | 23, 1, 28 | syl2an 597 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋↑2) / 𝐷) ∈ ℝ) |
30 | flword2 13774 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ ((𝑋↑2) / 𝐷) ∈ ℝ ∧ 𝑋 ≤ ((𝑋↑2) / 𝐷)) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋))) | |
31 | 7, 29, 27, 30 | syl3anc 1372 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋))) |
32 | 27, 31 | jca 513 | 1 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5147 ‘cfv 6540 (class class class)co 7404 ℂcc 11104 ℝcr 11105 0cc0 11106 1c1 11107 · cmul 11111 < clt 11244 ≤ cle 11245 / cdiv 11867 ℕcn 12208 2c2 12263 ℤcz 12554 ℤ≥cuz 12818 ℝ+crp 12970 ...cfz 13480 ⌊cfl 13751 ↑cexp 14023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fl 13753 df-seq 13963 df-exp 14024 |
This theorem is referenced by: dchrisum0lem1b 26998 dchrisum0lem1 26999 |
Copyright terms: Public domain | W3C validator |