| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrisum0lem1a | Structured version Visualization version GIF version | ||
| Description: Lemma for dchrisum0lem1 27443. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| dchrisum0lem1a | ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn 13474 | . . . . . . 7 ⊢ (𝐷 ∈ (1...(⌊‘𝑋)) → 𝐷 ∈ ℕ) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℕ) |
| 3 | 2 | nnred 12161 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ) |
| 4 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+) | |
| 5 | 4 | rpregt0d 12961 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋 ∈ ℝ ∧ 0 < 𝑋)) |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ∈ ℝ ∧ 0 < 𝑋)) |
| 7 | 6 | simpld 494 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ) |
| 8 | 4 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ+) |
| 9 | 8 | rpge0d 12959 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 0 ≤ 𝑋) |
| 10 | 4 | rpred 12955 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ) |
| 11 | fznnfl 13784 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷 ≤ 𝑋))) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷 ≤ 𝑋))) |
| 13 | 12 | simplbda 499 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ≤ 𝑋) |
| 14 | 3, 7, 7, 9, 13 | lemul2ad 12083 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋 · 𝑋)) |
| 15 | rpcn 12922 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ+ → 𝑋 ∈ ℂ) | |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ) |
| 17 | 16 | sqvald 14068 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) = (𝑋 · 𝑋)) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) = (𝑋 · 𝑋)) |
| 19 | 14, 18 | breqtrrd 5123 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋↑2)) |
| 20 | 2z 12525 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 21 | rpexpcl 14005 | . . . . . . 7 ⊢ ((𝑋 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑋↑2) ∈ ℝ+) | |
| 22 | 4, 20, 21 | sylancl 586 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ+) |
| 23 | 22 | rpred 12955 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) ∈ ℝ) |
| 25 | 2 | nnrpd 12953 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ+) |
| 26 | 7, 24, 25 | lemuldivd 13004 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋 · 𝐷) ≤ (𝑋↑2) ↔ 𝑋 ≤ ((𝑋↑2) / 𝐷))) |
| 27 | 19, 26 | mpbid 232 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ≤ ((𝑋↑2) / 𝐷)) |
| 28 | nndivre 12187 | . . . 4 ⊢ (((𝑋↑2) ∈ ℝ ∧ 𝐷 ∈ ℕ) → ((𝑋↑2) / 𝐷) ∈ ℝ) | |
| 29 | 23, 1, 28 | syl2an 596 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋↑2) / 𝐷) ∈ ℝ) |
| 30 | flword2 13735 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ ((𝑋↑2) / 𝐷) ∈ ℝ ∧ 𝑋 ≤ ((𝑋↑2) / 𝐷)) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋))) | |
| 31 | 7, 29, 27, 30 | syl3anc 1373 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋))) |
| 32 | 27, 31 | jca 511 | 1 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 · cmul 11033 < clt 11168 ≤ cle 11169 / cdiv 11795 ℕcn 12146 2c2 12201 ℤcz 12489 ℤ≥cuz 12753 ℝ+crp 12911 ...cfz 13428 ⌊cfl 13712 ↑cexp 13986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fl 13714 df-seq 13927 df-exp 13987 |
| This theorem is referenced by: dchrisum0lem1b 27442 dchrisum0lem1 27443 |
| Copyright terms: Public domain | W3C validator |