| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrisum0lem1a | Structured version Visualization version GIF version | ||
| Description: Lemma for dchrisum0lem1 27427. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| dchrisum0lem1a | ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn 13514 | . . . . . . 7 ⊢ (𝐷 ∈ (1...(⌊‘𝑋)) → 𝐷 ∈ ℕ) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℕ) |
| 3 | 2 | nnred 12201 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ) |
| 4 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+) | |
| 5 | 4 | rpregt0d 13001 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋 ∈ ℝ ∧ 0 < 𝑋)) |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ∈ ℝ ∧ 0 < 𝑋)) |
| 7 | 6 | simpld 494 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ) |
| 8 | 4 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ+) |
| 9 | 8 | rpge0d 12999 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 0 ≤ 𝑋) |
| 10 | 4 | rpred 12995 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ) |
| 11 | fznnfl 13824 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷 ≤ 𝑋))) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷 ≤ 𝑋))) |
| 13 | 12 | simplbda 499 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ≤ 𝑋) |
| 14 | 3, 7, 7, 9, 13 | lemul2ad 12123 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋 · 𝑋)) |
| 15 | rpcn 12962 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ+ → 𝑋 ∈ ℂ) | |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ) |
| 17 | 16 | sqvald 14108 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) = (𝑋 · 𝑋)) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) = (𝑋 · 𝑋)) |
| 19 | 14, 18 | breqtrrd 5135 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋↑2)) |
| 20 | 2z 12565 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 21 | rpexpcl 14045 | . . . . . . 7 ⊢ ((𝑋 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑋↑2) ∈ ℝ+) | |
| 22 | 4, 20, 21 | sylancl 586 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ+) |
| 23 | 22 | rpred 12995 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) ∈ ℝ) |
| 25 | 2 | nnrpd 12993 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ+) |
| 26 | 7, 24, 25 | lemuldivd 13044 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋 · 𝐷) ≤ (𝑋↑2) ↔ 𝑋 ≤ ((𝑋↑2) / 𝐷))) |
| 27 | 19, 26 | mpbid 232 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ≤ ((𝑋↑2) / 𝐷)) |
| 28 | nndivre 12227 | . . . 4 ⊢ (((𝑋↑2) ∈ ℝ ∧ 𝐷 ∈ ℕ) → ((𝑋↑2) / 𝐷) ∈ ℝ) | |
| 29 | 23, 1, 28 | syl2an 596 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋↑2) / 𝐷) ∈ ℝ) |
| 30 | flword2 13775 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ ((𝑋↑2) / 𝐷) ∈ ℝ ∧ 𝑋 ≤ ((𝑋↑2) / 𝐷)) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋))) | |
| 31 | 7, 29, 27, 30 | syl3anc 1373 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋))) |
| 32 | 27, 31 | jca 511 | 1 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 ≤ cle 11209 / cdiv 11835 ℕcn 12186 2c2 12241 ℤcz 12529 ℤ≥cuz 12793 ℝ+crp 12951 ...cfz 13468 ⌊cfl 13752 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fl 13754 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: dchrisum0lem1b 27426 dchrisum0lem1 27427 |
| Copyright terms: Public domain | W3C validator |