| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrisum0lem1a | Structured version Visualization version GIF version | ||
| Description: Lemma for dchrisum0lem1 27460. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| dchrisum0lem1a | ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn 13459 | . . . . . . 7 ⊢ (𝐷 ∈ (1...(⌊‘𝑋)) → 𝐷 ∈ ℕ) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℕ) |
| 3 | 2 | nnred 12146 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ) |
| 4 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+) | |
| 5 | 4 | rpregt0d 12946 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋 ∈ ℝ ∧ 0 < 𝑋)) |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ∈ ℝ ∧ 0 < 𝑋)) |
| 7 | 6 | simpld 494 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ) |
| 8 | 4 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ+) |
| 9 | 8 | rpge0d 12944 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 0 ≤ 𝑋) |
| 10 | 4 | rpred 12940 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ) |
| 11 | fznnfl 13772 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷 ≤ 𝑋))) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷 ≤ 𝑋))) |
| 13 | 12 | simplbda 499 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ≤ 𝑋) |
| 14 | 3, 7, 7, 9, 13 | lemul2ad 12068 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋 · 𝑋)) |
| 15 | rpcn 12907 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ+ → 𝑋 ∈ ℂ) | |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ) |
| 17 | 16 | sqvald 14056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) = (𝑋 · 𝑋)) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) = (𝑋 · 𝑋)) |
| 19 | 14, 18 | breqtrrd 5121 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋↑2)) |
| 20 | 2z 12510 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 21 | rpexpcl 13993 | . . . . . . 7 ⊢ ((𝑋 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑋↑2) ∈ ℝ+) | |
| 22 | 4, 20, 21 | sylancl 586 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ+) |
| 23 | 22 | rpred 12940 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) ∈ ℝ) |
| 25 | 2 | nnrpd 12938 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ+) |
| 26 | 7, 24, 25 | lemuldivd 12989 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋 · 𝐷) ≤ (𝑋↑2) ↔ 𝑋 ≤ ((𝑋↑2) / 𝐷))) |
| 27 | 19, 26 | mpbid 232 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ≤ ((𝑋↑2) / 𝐷)) |
| 28 | nndivre 12172 | . . . 4 ⊢ (((𝑋↑2) ∈ ℝ ∧ 𝐷 ∈ ℕ) → ((𝑋↑2) / 𝐷) ∈ ℝ) | |
| 29 | 23, 1, 28 | syl2an 596 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋↑2) / 𝐷) ∈ ℝ) |
| 30 | flword2 13723 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ ((𝑋↑2) / 𝐷) ∈ ℝ ∧ 𝑋 ≤ ((𝑋↑2) / 𝐷)) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋))) | |
| 31 | 7, 29, 27, 30 | syl3anc 1373 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋))) |
| 32 | 27, 31 | jca 511 | 1 ⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 ℂcc 11010 ℝcr 11011 0cc0 11012 1c1 11013 · cmul 11017 < clt 11152 ≤ cle 11153 / cdiv 11780 ℕcn 12131 2c2 12186 ℤcz 12474 ℤ≥cuz 12738 ℝ+crp 12896 ...cfz 13413 ⌊cfl 13700 ↑cexp 13974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9332 df-inf 9333 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-n0 12388 df-z 12475 df-uz 12739 df-rp 12897 df-fz 13414 df-fl 13702 df-seq 13915 df-exp 13975 |
| This theorem is referenced by: dchrisum0lem1b 27459 dchrisum0lem1 27460 |
| Copyright terms: Public domain | W3C validator |