MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1a Structured version   Visualization version   GIF version

Theorem dchrisum0lem1a 26969
Description: Lemma for dchrisum0lem1 26999. (Contributed by Mario Carneiro, 7-Jun-2016.)
Assertion
Ref Expression
dchrisum0lem1a (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ‘(⌊‘𝑋))))

Proof of Theorem dchrisum0lem1a
StepHypRef Expression
1 elfznn 13526 . . . . . . 7 (𝐷 ∈ (1...(⌊‘𝑋)) → 𝐷 ∈ ℕ)
21adantl 483 . . . . . 6 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℕ)
32nnred 12223 . . . . 5 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ)
4 simpr 486 . . . . . . . 8 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+)
54rpregt0d 13018 . . . . . . 7 ((𝜑𝑋 ∈ ℝ+) → (𝑋 ∈ ℝ ∧ 0 < 𝑋))
65adantr 482 . . . . . 6 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ∈ ℝ ∧ 0 < 𝑋))
76simpld 496 . . . . 5 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ)
84adantr 482 . . . . . 6 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ+)
98rpge0d 13016 . . . . 5 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 0 ≤ 𝑋)
104rpred 13012 . . . . . . 7 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ)
11 fznnfl 13823 . . . . . . 7 (𝑋 ∈ ℝ → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷𝑋)))
1210, 11syl 17 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷𝑋)))
1312simplbda 501 . . . . 5 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷𝑋)
143, 7, 7, 9, 13lemul2ad 12150 . . . 4 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋 · 𝑋))
15 rpcn 12980 . . . . . . 7 (𝑋 ∈ ℝ+𝑋 ∈ ℂ)
1615adantl 483 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ)
1716sqvald 14104 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (𝑋↑2) = (𝑋 · 𝑋))
1817adantr 482 . . . 4 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) = (𝑋 · 𝑋))
1914, 18breqtrrd 5175 . . 3 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋↑2))
20 2z 12590 . . . . . . 7 2 ∈ ℤ
21 rpexpcl 14042 . . . . . . 7 ((𝑋 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑋↑2) ∈ ℝ+)
224, 20, 21sylancl 587 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ+)
2322rpred 13012 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ)
2423adantr 482 . . . 4 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) ∈ ℝ)
252nnrpd 13010 . . . 4 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ+)
267, 24, 25lemuldivd 13061 . . 3 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋 · 𝐷) ≤ (𝑋↑2) ↔ 𝑋 ≤ ((𝑋↑2) / 𝐷)))
2719, 26mpbid 231 . 2 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ≤ ((𝑋↑2) / 𝐷))
28 nndivre 12249 . . . 4 (((𝑋↑2) ∈ ℝ ∧ 𝐷 ∈ ℕ) → ((𝑋↑2) / 𝐷) ∈ ℝ)
2923, 1, 28syl2an 597 . . 3 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋↑2) / 𝐷) ∈ ℝ)
30 flword2 13774 . . 3 ((𝑋 ∈ ℝ ∧ ((𝑋↑2) / 𝐷) ∈ ℝ ∧ 𝑋 ≤ ((𝑋↑2) / 𝐷)) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ‘(⌊‘𝑋)))
317, 29, 27, 30syl3anc 1372 . 2 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ‘(⌊‘𝑋)))
3227, 31jca 513 1 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ‘(⌊‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107   class class class wbr 5147  cfv 6540  (class class class)co 7404  cc 11104  cr 11105  0cc0 11106  1c1 11107   · cmul 11111   < clt 11244  cle 11245   / cdiv 11867  cn 12208  2c2 12263  cz 12554  cuz 12818  +crp 12970  ...cfz 13480  cfl 13751  cexp 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fl 13753  df-seq 13963  df-exp 14024
This theorem is referenced by:  dchrisum0lem1b  26998  dchrisum0lem1  26999
  Copyright terms: Public domain W3C validator