MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1a Structured version   Visualization version   GIF version

Theorem dchrisum0lem1a 27433
Description: Lemma for dchrisum0lem1 27463. (Contributed by Mario Carneiro, 7-Jun-2016.)
Assertion
Ref Expression
dchrisum0lem1a (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ‘(⌊‘𝑋))))

Proof of Theorem dchrisum0lem1a
StepHypRef Expression
1 elfznn 13559 . . . . . . 7 (𝐷 ∈ (1...(⌊‘𝑋)) → 𝐷 ∈ ℕ)
21adantl 481 . . . . . 6 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℕ)
32nnred 12247 . . . . 5 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ)
4 simpr 484 . . . . . . . 8 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+)
54rpregt0d 13049 . . . . . . 7 ((𝜑𝑋 ∈ ℝ+) → (𝑋 ∈ ℝ ∧ 0 < 𝑋))
65adantr 480 . . . . . 6 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ∈ ℝ ∧ 0 < 𝑋))
76simpld 494 . . . . 5 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ)
84adantr 480 . . . . . 6 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ+)
98rpge0d 13047 . . . . 5 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 0 ≤ 𝑋)
104rpred 13043 . . . . . . 7 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ)
11 fznnfl 13868 . . . . . . 7 (𝑋 ∈ ℝ → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷𝑋)))
1210, 11syl 17 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷𝑋)))
1312simplbda 499 . . . . 5 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷𝑋)
143, 7, 7, 9, 13lemul2ad 12174 . . . 4 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋 · 𝑋))
15 rpcn 13011 . . . . . . 7 (𝑋 ∈ ℝ+𝑋 ∈ ℂ)
1615adantl 481 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ)
1716sqvald 14150 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (𝑋↑2) = (𝑋 · 𝑋))
1817adantr 480 . . . 4 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) = (𝑋 · 𝑋))
1914, 18breqtrrd 5144 . . 3 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋↑2))
20 2z 12616 . . . . . . 7 2 ∈ ℤ
21 rpexpcl 14087 . . . . . . 7 ((𝑋 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑋↑2) ∈ ℝ+)
224, 20, 21sylancl 586 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ+)
2322rpred 13043 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ)
2423adantr 480 . . . 4 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) ∈ ℝ)
252nnrpd 13041 . . . 4 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ+)
267, 24, 25lemuldivd 13092 . . 3 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋 · 𝐷) ≤ (𝑋↑2) ↔ 𝑋 ≤ ((𝑋↑2) / 𝐷)))
2719, 26mpbid 232 . 2 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ≤ ((𝑋↑2) / 𝐷))
28 nndivre 12273 . . . 4 (((𝑋↑2) ∈ ℝ ∧ 𝐷 ∈ ℕ) → ((𝑋↑2) / 𝐷) ∈ ℝ)
2923, 1, 28syl2an 596 . . 3 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋↑2) / 𝐷) ∈ ℝ)
30 flword2 13819 . . 3 ((𝑋 ∈ ℝ ∧ ((𝑋↑2) / 𝐷) ∈ ℝ ∧ 𝑋 ≤ ((𝑋↑2) / 𝐷)) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ‘(⌊‘𝑋)))
317, 29, 27, 30syl3anc 1372 . 2 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ‘(⌊‘𝑋)))
3227, 31jca 511 1 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ‘(⌊‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107   class class class wbr 5116  cfv 6527  (class class class)co 7399  cc 11119  cr 11120  0cc0 11121  1c1 11122   · cmul 11126   < clt 11261  cle 11262   / cdiv 11886  cn 12232  2c2 12287  cz 12580  cuz 12844  +crp 13000  ...cfz 13513  cfl 13796  cexp 14068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9448  df-inf 9449  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-n0 12494  df-z 12581  df-uz 12845  df-rp 13001  df-fz 13514  df-fl 13798  df-seq 14009  df-exp 14069
This theorem is referenced by:  dchrisum0lem1b  27462  dchrisum0lem1  27463
  Copyright terms: Public domain W3C validator