MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1b Structured version   Visualization version   GIF version

Theorem dchrisum0lem1b 27478
Description: Lemma for dchrisum0lem1 27479. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
Assertion
Ref Expression
dchrisum0lem1b (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥)))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem1b
StepHypRef Expression
1 fzfid 13991 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin)
2 ssun2 4154 . . . . . . 7 (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))
3 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
43rprege0d 13058 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
5 flge0nn0 13837 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
64, 5syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℕ0)
7 nn0p1nn 12540 . . . . . . . . . . 11 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
86, 7syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ ℕ)
98adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ ℕ)
10 nnuz 12895 . . . . . . . . 9 ℕ = (ℤ‘1)
119, 10eleqtrdi 2844 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
12 dchrisum0lem1a 27449 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))))
1312simprd 495 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥)))
14 fzsplit2 13566 . . . . . . . 8 ((((⌊‘𝑥) + 1) ∈ (ℤ‘1) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
1511, 13, 14syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
162, 15sseqtrrid 4002 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑))))
1716sselda 3958 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))))
18 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
19 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
20 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
21 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
22 rpvmasum2.w . . . . . . . . . . 11 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
2322ssrab3 4057 . . . . . . . . . 10 𝑊 ⊆ (𝐷 ∖ { 1 })
24 dchrisum0.b . . . . . . . . . 10 (𝜑𝑋𝑊)
2523, 24sselid 3956 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
2625eldifad 3938 . . . . . . . 8 (𝜑𝑋𝐷)
2726ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑋𝐷)
28 elfzelz 13541 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℤ)
2928adantl 481 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℤ)
3018, 19, 20, 21, 27, 29dchrzrhcl 27208 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
31 elfznn 13570 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℕ)
3231adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℕ)
3332nnrpd 13049 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℝ+)
3433rpsqrtcld 15430 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℝ+)
3534rpcnd 13053 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℂ)
3634rpne0d 13056 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ≠ 0)
3730, 35, 36divcld 12017 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
3817, 37syldan 591 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
391, 38fsumcl 15749 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
4039abscld 15455 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ ℝ)
41 1zzd 12623 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
4226adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
43 nnz 12609 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4443adantl 481 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
4518, 19, 20, 21, 42, 44dchrzrhcl 27208 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
46 nnrp 13020 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
4746adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
4847rpsqrtcld 15430 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℝ+)
4948rpcnd 13053 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℂ)
5048rpne0d 13056 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ≠ 0)
5145, 49, 50divcld 12017 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
52 dchrisum0lem1.f . . . . . . . . . . 11 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
53 2fveq3 6881 . . . . . . . . . . . . 13 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
54 fveq2 6876 . . . . . . . . . . . . 13 (𝑎 = 𝑚 → (√‘𝑎) = (√‘𝑚))
5553, 54oveq12d 7423 . . . . . . . . . . . 12 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5655cbvmptv 5225 . . . . . . . . . . 11 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5752, 56eqtri 2758 . . . . . . . . . 10 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5851, 57fmptd 7104 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℂ)
5958ffvelcdmda 7074 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
6010, 41, 59serf 14048 . . . . . . 7 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
6160ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → seq1( + , 𝐹):ℕ⟶ℂ)
623rpregt0d 13057 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6362adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6463simpld 494 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
65 1red 11236 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
66 elfznn 13570 . . . . . . . . . . 11 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
6766adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
6867nnred 12255 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ)
6967nnge1d 12288 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑑)
703rpred 13051 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
71 fznnfl 13879 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7270, 71syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7372simplbda 499 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑𝑥)
7465, 68, 64, 69, 73letrd 11392 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑥)
75 flge1nn 13838 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
7664, 74, 75syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) ∈ ℕ)
77 eluznn 12934 . . . . . . 7 (((⌊‘𝑥) ∈ ℕ ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℕ)
7876, 13, 77syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℕ)
7961, 78ffvelcdmd 7075 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) ∈ ℂ)
80 dchrisum0.s . . . . . . 7 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
81 climcl 15515 . . . . . . 7 (seq1( + , 𝐹) ⇝ 𝑆𝑆 ∈ ℂ)
8280, 81syl 17 . . . . . 6 (𝜑𝑆 ∈ ℂ)
8382ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑆 ∈ ℂ)
8479, 83subcld 11594 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆) ∈ ℂ)
8584abscld 15455 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ∈ ℝ)
8661, 76ffvelcdmd 7075 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (seq1( + , 𝐹)‘(⌊‘𝑥)) ∈ ℂ)
8783, 86subcld 11594 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ ℂ)
8887abscld 15455 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))) ∈ ℝ)
8985, 88readdcld 11264 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ∈ ℝ)
90 2re 12314 . . . . . 6 2 ∈ ℝ
91 dchrisum0.c . . . . . . . 8 (𝜑𝐶 ∈ (0[,)+∞))
92 elrege0 13471 . . . . . . . 8 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
9391, 92sylib 218 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
9493simpld 494 . . . . . 6 (𝜑𝐶 ∈ ℝ)
95 remulcl 11214 . . . . . 6 ((2 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
9690, 94, 95sylancr 587 . . . . 5 (𝜑 → (2 · 𝐶) ∈ ℝ)
9796adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝐶) ∈ ℝ)
983rpsqrtcld 15430 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
9997, 98rerpdivcld 13082 . . 3 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
10099adantr 480 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
101 ssun1 4153 . . . . . . . . . . 11 (1...(⌊‘𝑥)) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))
102101, 15sseqtrrid 4002 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘𝑥)) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑))))
103102sselda 3958 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))))
104 ovex 7438 . . . . . . . . . . 11 ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) ∈ V
10555, 52, 104fvmpt3i 6991 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
10632, 105syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
107103, 106syldan 591 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
10876, 10eleqtrdi 2844 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) ∈ (ℤ‘1))
109103, 37syldan 591 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
110107, 108, 109fsumser 15746 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
111110, 86eqeltrd 2834 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
112111, 39pncan2d 11596 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
113 reflcl 13813 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
11464, 113syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) ∈ ℝ)
115114ltp1d 12172 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) < ((⌊‘𝑥) + 1))
116 fzdisj 13568 . . . . . . . . 9 ((⌊‘𝑥) < ((⌊‘𝑥) + 1) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) = ∅)
117115, 116syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) = ∅)
118 fzfid 13991 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin)
119117, 15, 118, 37fsumsplit 15757 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
12078, 10eleqtrdi 2844 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘1))
121106, 120, 37fsumser 15746 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))))
122119, 121eqtr3d 2772 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))))
123122, 110oveq12d 7423 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥))))
124112, 123eqtr3d 2772 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥))))
125124fveq2d 6880 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥)))))
12679, 86, 83abs3difd 15479 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥)))) ≤ ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))))
127125, 126eqbrtrd 5141 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))))
12894ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
129 simplr 768 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
130129rpsqrtcld 15430 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑥) ∈ ℝ+)
131128, 130rerpdivcld 13082 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘𝑥)) ∈ ℝ)
132 2z 12624 . . . . . . . . . 10 2 ∈ ℤ
133 rpexpcl 14098 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
1343, 132, 133sylancl 586 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
135134adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥↑2) ∈ ℝ+)
13667nnrpd 13049 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
137135, 136rpdivcld 13068 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑑) ∈ ℝ+)
138137rpsqrtcld 15430 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑑)) ∈ ℝ+)
139128, 138rerpdivcld 13082 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘((𝑥↑2) / 𝑑))) ∈ ℝ)
140 2fveq3 6881 . . . . . . . 8 (𝑦 = ((𝑥↑2) / 𝑑) → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))))
141140fvoveq1d 7427 . . . . . . 7 (𝑦 = ((𝑥↑2) / 𝑑) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) = (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)))
142 fveq2 6876 . . . . . . . 8 (𝑦 = ((𝑥↑2) / 𝑑) → (√‘𝑦) = (√‘((𝑥↑2) / 𝑑)))
143142oveq2d 7421 . . . . . . 7 (𝑦 = ((𝑥↑2) / 𝑑) → (𝐶 / (√‘𝑦)) = (𝐶 / (√‘((𝑥↑2) / 𝑑))))
144141, 143breq12d 5132 . . . . . 6 (𝑦 = ((𝑥↑2) / 𝑑) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘((𝑥↑2) / 𝑑)))))
145 dchrisum0.1 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
146145ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
147134rpred 13051 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ)
148 nndivre 12281 . . . . . . . 8 (((𝑥↑2) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((𝑥↑2) / 𝑑) ∈ ℝ)
149147, 66, 148syl2an 596 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑑) ∈ ℝ)
15012simpld 494 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ≤ ((𝑥↑2) / 𝑑))
15165, 64, 149, 74, 150letrd 11392 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ ((𝑥↑2) / 𝑑))
152 1re 11235 . . . . . . . 8 1 ∈ ℝ
153 elicopnf 13462 . . . . . . . 8 (1 ∈ ℝ → (((𝑥↑2) / 𝑑) ∈ (1[,)+∞) ↔ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 1 ≤ ((𝑥↑2) / 𝑑))))
154152, 153ax-mp 5 . . . . . . 7 (((𝑥↑2) / 𝑑) ∈ (1[,)+∞) ↔ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 1 ≤ ((𝑥↑2) / 𝑑)))
155149, 151, 154sylanbrc 583 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑑) ∈ (1[,)+∞))
156144, 146, 155rspcdva 3602 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘((𝑥↑2) / 𝑑))))
157130rpregt0d 13057 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑥) ∈ ℝ ∧ 0 < (√‘𝑥)))
158138rpregt0d 13057 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘((𝑥↑2) / 𝑑)) ∈ ℝ ∧ 0 < (√‘((𝑥↑2) / 𝑑))))
15993ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
160129rprege0d 13058 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
161137rprege0d 13058 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 0 ≤ ((𝑥↑2) / 𝑑)))
162 sqrtle 15279 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 0 ≤ ((𝑥↑2) / 𝑑))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ↔ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑))))
163160, 161, 162syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ↔ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑))))
164150, 163mpbid 232 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑)))
165 lediv2a 12136 . . . . . 6 (((((√‘𝑥) ∈ ℝ ∧ 0 < (√‘𝑥)) ∧ ((√‘((𝑥↑2) / 𝑑)) ∈ ℝ ∧ 0 < (√‘((𝑥↑2) / 𝑑))) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑))) → (𝐶 / (√‘((𝑥↑2) / 𝑑))) ≤ (𝐶 / (√‘𝑥)))
166157, 158, 159, 164, 165syl31anc 1375 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘((𝑥↑2) / 𝑑))) ≤ (𝐶 / (√‘𝑥)))
16785, 139, 131, 156, 166letrd 11392 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘𝑥)))
16883, 86abssubd 15472 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)))
169 2fveq3 6881 . . . . . . . 8 (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
170169fvoveq1d 7427 . . . . . . 7 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)))
171 fveq2 6876 . . . . . . . 8 (𝑦 = 𝑥 → (√‘𝑦) = (√‘𝑥))
172171oveq2d 7421 . . . . . . 7 (𝑦 = 𝑥 → (𝐶 / (√‘𝑦)) = (𝐶 / (√‘𝑥)))
173170, 172breq12d 5132 . . . . . 6 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)) ≤ (𝐶 / (√‘𝑥))))
174 elicopnf 13462 . . . . . . . 8 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
175152, 174ax-mp 5 . . . . . . 7 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
17664, 74, 175sylanbrc 583 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ (1[,)+∞))
177173, 146, 176rspcdva 3602 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)) ≤ (𝐶 / (√‘𝑥)))
178168, 177eqbrtrd 5141 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))) ≤ (𝐶 / (√‘𝑥)))
17985, 88, 131, 131, 167, 178le2addd 11856 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ≤ ((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥))))
180 2cnd 12318 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
18194adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
182181recnd 11263 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℂ)
183182adantr 480 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℂ)
18498rpcnne0d 13060 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
185184adantr 480 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
186 divass 11914 . . . . 5 ((2 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0)) → ((2 · 𝐶) / (√‘𝑥)) = (2 · (𝐶 / (√‘𝑥))))
187180, 183, 185, 186syl3anc 1373 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) = (2 · (𝐶 / (√‘𝑥))))
188131recnd 11263 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘𝑥)) ∈ ℂ)
1891882timesd 12484 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (2 · (𝐶 / (√‘𝑥))) = ((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥))))
190187, 189eqtrd 2770 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) = ((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥))))
191179, 190breqtrrd 5147 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ≤ ((2 · 𝐶) / (√‘𝑥)))
19240, 89, 100, 127, 191letrd 11392 1 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  cdif 3923  cun 3924  cin 3925  c0 4308  {csn 4601   class class class wbr 5119  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  +∞cpnf 11266   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cz 12588  cuz 12852  +crp 13008  [,)cico 13364  ...cfz 13524  cfl 13807  seqcseq 14019  cexp 14079  csqrt 15252  abscabs 15253  cli 15500  Σcsu 15702  Basecbs 17228  0gc0g 17453  ℤRHomczrh 21460  ℤ/nczn 21463  DChrcdchr 27195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-ico 13368  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-imas 17522  df-qus 17523  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-zn 21467  df-dchr 27196
This theorem is referenced by:  dchrisum0lem1  27479
  Copyright terms: Public domain W3C validator