MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1b Structured version   Visualization version   GIF version

Theorem dchrisum0lem1b 27459
Description: Lemma for dchrisum0lem1 27460. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
Assertion
Ref Expression
dchrisum0lem1b (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥)))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem1b
StepHypRef Expression
1 fzfid 13886 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin)
2 ssun2 4128 . . . . . . 7 (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))
3 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
43rprege0d 12947 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
5 flge0nn0 13730 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
64, 5syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℕ0)
7 nn0p1nn 12426 . . . . . . . . . . 11 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
86, 7syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ ℕ)
98adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ ℕ)
10 nnuz 12781 . . . . . . . . 9 ℕ = (ℤ‘1)
119, 10eleqtrdi 2841 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
12 dchrisum0lem1a 27430 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))))
1312simprd 495 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥)))
14 fzsplit2 13455 . . . . . . . 8 ((((⌊‘𝑥) + 1) ∈ (ℤ‘1) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
1511, 13, 14syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
162, 15sseqtrrid 3973 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑))))
1716sselda 3929 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))))
18 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
19 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
20 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
21 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
22 rpvmasum2.w . . . . . . . . . . 11 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
2322ssrab3 4031 . . . . . . . . . 10 𝑊 ⊆ (𝐷 ∖ { 1 })
24 dchrisum0.b . . . . . . . . . 10 (𝜑𝑋𝑊)
2523, 24sselid 3927 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
2625eldifad 3909 . . . . . . . 8 (𝜑𝑋𝐷)
2726ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑋𝐷)
28 elfzelz 13430 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℤ)
2928adantl 481 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℤ)
3018, 19, 20, 21, 27, 29dchrzrhcl 27189 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
31 elfznn 13459 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℕ)
3231adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℕ)
3332nnrpd 12938 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℝ+)
3433rpsqrtcld 15325 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℝ+)
3534rpcnd 12942 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℂ)
3634rpne0d 12945 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ≠ 0)
3730, 35, 36divcld 11903 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
3817, 37syldan 591 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
391, 38fsumcl 15646 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
4039abscld 15352 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ ℝ)
41 1zzd 12509 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
4226adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
43 nnz 12495 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4443adantl 481 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
4518, 19, 20, 21, 42, 44dchrzrhcl 27189 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
46 nnrp 12908 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
4746adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
4847rpsqrtcld 15325 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℝ+)
4948rpcnd 12942 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℂ)
5048rpne0d 12945 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ≠ 0)
5145, 49, 50divcld 11903 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
52 dchrisum0lem1.f . . . . . . . . . . 11 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
53 2fveq3 6833 . . . . . . . . . . . . 13 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
54 fveq2 6828 . . . . . . . . . . . . 13 (𝑎 = 𝑚 → (√‘𝑎) = (√‘𝑚))
5553, 54oveq12d 7370 . . . . . . . . . . . 12 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5655cbvmptv 5197 . . . . . . . . . . 11 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5752, 56eqtri 2754 . . . . . . . . . 10 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5851, 57fmptd 7053 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℂ)
5958ffvelcdmda 7023 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
6010, 41, 59serf 13943 . . . . . . 7 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
6160ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → seq1( + , 𝐹):ℕ⟶ℂ)
623rpregt0d 12946 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6362adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6463simpld 494 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
65 1red 11119 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
66 elfznn 13459 . . . . . . . . . . 11 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
6766adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
6867nnred 12146 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ)
6967nnge1d 12179 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑑)
703rpred 12940 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
71 fznnfl 13772 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7270, 71syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7372simplbda 499 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑𝑥)
7465, 68, 64, 69, 73letrd 11276 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑥)
75 flge1nn 13731 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
7664, 74, 75syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) ∈ ℕ)
77 eluznn 12822 . . . . . . 7 (((⌊‘𝑥) ∈ ℕ ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℕ)
7876, 13, 77syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℕ)
7961, 78ffvelcdmd 7024 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) ∈ ℂ)
80 dchrisum0.s . . . . . . 7 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
81 climcl 15412 . . . . . . 7 (seq1( + , 𝐹) ⇝ 𝑆𝑆 ∈ ℂ)
8280, 81syl 17 . . . . . 6 (𝜑𝑆 ∈ ℂ)
8382ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑆 ∈ ℂ)
8479, 83subcld 11478 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆) ∈ ℂ)
8584abscld 15352 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ∈ ℝ)
8661, 76ffvelcdmd 7024 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (seq1( + , 𝐹)‘(⌊‘𝑥)) ∈ ℂ)
8783, 86subcld 11478 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ ℂ)
8887abscld 15352 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))) ∈ ℝ)
8985, 88readdcld 11147 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ∈ ℝ)
90 2re 12205 . . . . . 6 2 ∈ ℝ
91 dchrisum0.c . . . . . . . 8 (𝜑𝐶 ∈ (0[,)+∞))
92 elrege0 13360 . . . . . . . 8 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
9391, 92sylib 218 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
9493simpld 494 . . . . . 6 (𝜑𝐶 ∈ ℝ)
95 remulcl 11097 . . . . . 6 ((2 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
9690, 94, 95sylancr 587 . . . . 5 (𝜑 → (2 · 𝐶) ∈ ℝ)
9796adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝐶) ∈ ℝ)
983rpsqrtcld 15325 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
9997, 98rerpdivcld 12971 . . 3 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
10099adantr 480 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
101 ssun1 4127 . . . . . . . . . . 11 (1...(⌊‘𝑥)) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))
102101, 15sseqtrrid 3973 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘𝑥)) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑))))
103102sselda 3929 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))))
104 ovex 7385 . . . . . . . . . . 11 ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) ∈ V
10555, 52, 104fvmpt3i 6940 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
10632, 105syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
107103, 106syldan 591 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
10876, 10eleqtrdi 2841 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) ∈ (ℤ‘1))
109103, 37syldan 591 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
110107, 108, 109fsumser 15643 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
111110, 86eqeltrd 2831 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
112111, 39pncan2d 11480 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
113 reflcl 13706 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
11464, 113syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) ∈ ℝ)
115114ltp1d 12058 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) < ((⌊‘𝑥) + 1))
116 fzdisj 13457 . . . . . . . . 9 ((⌊‘𝑥) < ((⌊‘𝑥) + 1) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) = ∅)
117115, 116syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) = ∅)
118 fzfid 13886 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin)
119117, 15, 118, 37fsumsplit 15654 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
12078, 10eleqtrdi 2841 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘1))
121106, 120, 37fsumser 15643 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))))
122119, 121eqtr3d 2768 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))))
123122, 110oveq12d 7370 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥))))
124112, 123eqtr3d 2768 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥))))
125124fveq2d 6832 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥)))))
12679, 86, 83abs3difd 15376 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥)))) ≤ ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))))
127125, 126eqbrtrd 5115 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))))
12894ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
129 simplr 768 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
130129rpsqrtcld 15325 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑥) ∈ ℝ+)
131128, 130rerpdivcld 12971 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘𝑥)) ∈ ℝ)
132 2z 12510 . . . . . . . . . 10 2 ∈ ℤ
133 rpexpcl 13993 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
1343, 132, 133sylancl 586 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
135134adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥↑2) ∈ ℝ+)
13667nnrpd 12938 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
137135, 136rpdivcld 12957 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑑) ∈ ℝ+)
138137rpsqrtcld 15325 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑑)) ∈ ℝ+)
139128, 138rerpdivcld 12971 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘((𝑥↑2) / 𝑑))) ∈ ℝ)
140 2fveq3 6833 . . . . . . . 8 (𝑦 = ((𝑥↑2) / 𝑑) → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))))
141140fvoveq1d 7374 . . . . . . 7 (𝑦 = ((𝑥↑2) / 𝑑) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) = (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)))
142 fveq2 6828 . . . . . . . 8 (𝑦 = ((𝑥↑2) / 𝑑) → (√‘𝑦) = (√‘((𝑥↑2) / 𝑑)))
143142oveq2d 7368 . . . . . . 7 (𝑦 = ((𝑥↑2) / 𝑑) → (𝐶 / (√‘𝑦)) = (𝐶 / (√‘((𝑥↑2) / 𝑑))))
144141, 143breq12d 5106 . . . . . 6 (𝑦 = ((𝑥↑2) / 𝑑) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘((𝑥↑2) / 𝑑)))))
145 dchrisum0.1 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
146145ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
147134rpred 12940 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ)
148 nndivre 12172 . . . . . . . 8 (((𝑥↑2) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((𝑥↑2) / 𝑑) ∈ ℝ)
149147, 66, 148syl2an 596 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑑) ∈ ℝ)
15012simpld 494 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ≤ ((𝑥↑2) / 𝑑))
15165, 64, 149, 74, 150letrd 11276 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ ((𝑥↑2) / 𝑑))
152 1re 11118 . . . . . . . 8 1 ∈ ℝ
153 elicopnf 13351 . . . . . . . 8 (1 ∈ ℝ → (((𝑥↑2) / 𝑑) ∈ (1[,)+∞) ↔ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 1 ≤ ((𝑥↑2) / 𝑑))))
154152, 153ax-mp 5 . . . . . . 7 (((𝑥↑2) / 𝑑) ∈ (1[,)+∞) ↔ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 1 ≤ ((𝑥↑2) / 𝑑)))
155149, 151, 154sylanbrc 583 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑑) ∈ (1[,)+∞))
156144, 146, 155rspcdva 3573 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘((𝑥↑2) / 𝑑))))
157130rpregt0d 12946 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑥) ∈ ℝ ∧ 0 < (√‘𝑥)))
158138rpregt0d 12946 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘((𝑥↑2) / 𝑑)) ∈ ℝ ∧ 0 < (√‘((𝑥↑2) / 𝑑))))
15993ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
160129rprege0d 12947 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
161137rprege0d 12947 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 0 ≤ ((𝑥↑2) / 𝑑)))
162 sqrtle 15173 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 0 ≤ ((𝑥↑2) / 𝑑))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ↔ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑))))
163160, 161, 162syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ↔ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑))))
164150, 163mpbid 232 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑)))
165 lediv2a 12022 . . . . . 6 (((((√‘𝑥) ∈ ℝ ∧ 0 < (√‘𝑥)) ∧ ((√‘((𝑥↑2) / 𝑑)) ∈ ℝ ∧ 0 < (√‘((𝑥↑2) / 𝑑))) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑))) → (𝐶 / (√‘((𝑥↑2) / 𝑑))) ≤ (𝐶 / (√‘𝑥)))
166157, 158, 159, 164, 165syl31anc 1375 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘((𝑥↑2) / 𝑑))) ≤ (𝐶 / (√‘𝑥)))
16785, 139, 131, 156, 166letrd 11276 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘𝑥)))
16883, 86abssubd 15369 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)))
169 2fveq3 6833 . . . . . . . 8 (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
170169fvoveq1d 7374 . . . . . . 7 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)))
171 fveq2 6828 . . . . . . . 8 (𝑦 = 𝑥 → (√‘𝑦) = (√‘𝑥))
172171oveq2d 7368 . . . . . . 7 (𝑦 = 𝑥 → (𝐶 / (√‘𝑦)) = (𝐶 / (√‘𝑥)))
173170, 172breq12d 5106 . . . . . 6 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)) ≤ (𝐶 / (√‘𝑥))))
174 elicopnf 13351 . . . . . . . 8 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
175152, 174ax-mp 5 . . . . . . 7 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
17664, 74, 175sylanbrc 583 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ (1[,)+∞))
177173, 146, 176rspcdva 3573 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)) ≤ (𝐶 / (√‘𝑥)))
178168, 177eqbrtrd 5115 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))) ≤ (𝐶 / (√‘𝑥)))
17985, 88, 131, 131, 167, 178le2addd 11742 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ≤ ((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥))))
180 2cnd 12209 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
18194adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
182181recnd 11146 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℂ)
183182adantr 480 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℂ)
18498rpcnne0d 12949 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
185184adantr 480 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
186 divass 11800 . . . . 5 ((2 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0)) → ((2 · 𝐶) / (√‘𝑥)) = (2 · (𝐶 / (√‘𝑥))))
187180, 183, 185, 186syl3anc 1373 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) = (2 · (𝐶 / (√‘𝑥))))
188131recnd 11146 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘𝑥)) ∈ ℂ)
1891882timesd 12370 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (2 · (𝐶 / (√‘𝑥))) = ((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥))))
190187, 189eqtrd 2766 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) = ((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥))))
191179, 190breqtrrd 5121 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ≤ ((2 · 𝐶) / (√‘𝑥)))
19240, 89, 100, 127, 191letrd 11276 1 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  cdif 3894  cun 3895  cin 3896  c0 4282  {csn 4575   class class class wbr 5093  cmpt 5174  wf 6483  cfv 6487  (class class class)co 7352  cc 11010  cr 11011  0cc0 11012  1c1 11013   + caddc 11015   · cmul 11017  +∞cpnf 11149   < clt 11152  cle 11153  cmin 11350   / cdiv 11780  cn 12131  2c2 12186  0cn0 12387  cz 12474  cuz 12738  +crp 12896  [,)cico 13253  ...cfz 13413  cfl 13700  seqcseq 13914  cexp 13974  csqrt 15146  abscabs 15147  cli 15397  Σcsu 15599  Basecbs 17126  0gc0g 17349  ℤRHomczrh 21442  ℤ/nczn 21445  DChrcdchr 27176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090  ax-addf 11091  ax-mulf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-ec 8630  df-qs 8634  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-rp 12897  df-ico 13257  df-fz 13414  df-fzo 13561  df-fl 13702  df-seq 13915  df-exp 13975  df-hash 14244  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-clim 15401  df-sum 15600  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-0g 17351  df-imas 17418  df-qus 17419  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mhm 18697  df-grp 18855  df-minusg 18856  df-sbg 18857  df-mulg 18987  df-subg 19042  df-nsg 19043  df-eqg 19044  df-ghm 19131  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-cring 20160  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-rhm 20396  df-subrng 20467  df-subrg 20491  df-lmod 20801  df-lss 20871  df-lsp 20911  df-sra 21113  df-rgmod 21114  df-lidl 21151  df-rsp 21152  df-2idl 21193  df-cnfld 21298  df-zring 21390  df-zrh 21446  df-zn 21449  df-dchr 27177
This theorem is referenced by:  dchrisum0lem1  27460
  Copyright terms: Public domain W3C validator