MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1b Structured version   Visualization version   GIF version

Theorem dchrisum0lem1b 27544
Description: Lemma for dchrisum0lem1 27545. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
Assertion
Ref Expression
dchrisum0lem1b (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥)))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem1b
StepHypRef Expression
1 fzfid 13993 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin)
2 ssun2 4174 . . . . . . 7 (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))
3 simpr 483 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
43rprege0d 13077 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
5 flge0nn0 13840 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
64, 5syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℕ0)
7 nn0p1nn 12563 . . . . . . . . . . 11 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
86, 7syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ ℕ)
98adantr 479 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ ℕ)
10 nnuz 12917 . . . . . . . . 9 ℕ = (ℤ‘1)
119, 10eleqtrdi 2836 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
12 dchrisum0lem1a 27515 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))))
1312simprd 494 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥)))
14 fzsplit2 13580 . . . . . . . 8 ((((⌊‘𝑥) + 1) ∈ (ℤ‘1) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
1511, 13, 14syl2anc 582 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
162, 15sseqtrrid 4033 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑))))
1716sselda 3979 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))))
18 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
19 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
20 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
21 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
22 rpvmasum2.w . . . . . . . . . . 11 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
2322ssrab3 4079 . . . . . . . . . 10 𝑊 ⊆ (𝐷 ∖ { 1 })
24 dchrisum0.b . . . . . . . . . 10 (𝜑𝑋𝑊)
2523, 24sselid 3977 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
2625eldifad 3959 . . . . . . . 8 (𝜑𝑋𝐷)
2726ad3antrrr 728 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑋𝐷)
28 elfzelz 13555 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℤ)
2928adantl 480 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℤ)
3018, 19, 20, 21, 27, 29dchrzrhcl 27274 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
31 elfznn 13584 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℕ)
3231adantl 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℕ)
3332nnrpd 13068 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℝ+)
3433rpsqrtcld 15416 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℝ+)
3534rpcnd 13072 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℂ)
3634rpne0d 13075 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ≠ 0)
3730, 35, 36divcld 12041 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
3817, 37syldan 589 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
391, 38fsumcl 15737 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
4039abscld 15441 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ ℝ)
41 1zzd 12645 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
4226adantr 479 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
43 nnz 12631 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4443adantl 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
4518, 19, 20, 21, 42, 44dchrzrhcl 27274 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
46 nnrp 13039 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
4746adantl 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
4847rpsqrtcld 15416 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℝ+)
4948rpcnd 13072 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℂ)
5048rpne0d 13075 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ≠ 0)
5145, 49, 50divcld 12041 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
52 dchrisum0lem1.f . . . . . . . . . . 11 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
53 2fveq3 6906 . . . . . . . . . . . . 13 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
54 fveq2 6901 . . . . . . . . . . . . 13 (𝑎 = 𝑚 → (√‘𝑎) = (√‘𝑚))
5553, 54oveq12d 7442 . . . . . . . . . . . 12 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5655cbvmptv 5266 . . . . . . . . . . 11 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5752, 56eqtri 2754 . . . . . . . . . 10 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5851, 57fmptd 7128 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℂ)
5958ffvelcdmda 7098 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
6010, 41, 59serf 14050 . . . . . . 7 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
6160ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → seq1( + , 𝐹):ℕ⟶ℂ)
623rpregt0d 13076 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6362adantr 479 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6463simpld 493 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
65 1red 11265 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
66 elfznn 13584 . . . . . . . . . . 11 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
6766adantl 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
6867nnred 12279 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ)
6967nnge1d 12312 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑑)
703rpred 13070 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
71 fznnfl 13882 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7270, 71syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7372simplbda 498 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑𝑥)
7465, 68, 64, 69, 73letrd 11421 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑥)
75 flge1nn 13841 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
7664, 74, 75syl2anc 582 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) ∈ ℕ)
77 eluznn 12954 . . . . . . 7 (((⌊‘𝑥) ∈ ℕ ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℕ)
7876, 13, 77syl2anc 582 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℕ)
7961, 78ffvelcdmd 7099 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) ∈ ℂ)
80 dchrisum0.s . . . . . . 7 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
81 climcl 15501 . . . . . . 7 (seq1( + , 𝐹) ⇝ 𝑆𝑆 ∈ ℂ)
8280, 81syl 17 . . . . . 6 (𝜑𝑆 ∈ ℂ)
8382ad2antrr 724 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑆 ∈ ℂ)
8479, 83subcld 11621 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆) ∈ ℂ)
8584abscld 15441 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ∈ ℝ)
8661, 76ffvelcdmd 7099 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (seq1( + , 𝐹)‘(⌊‘𝑥)) ∈ ℂ)
8783, 86subcld 11621 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ ℂ)
8887abscld 15441 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))) ∈ ℝ)
8985, 88readdcld 11293 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ∈ ℝ)
90 2re 12338 . . . . . 6 2 ∈ ℝ
91 dchrisum0.c . . . . . . . 8 (𝜑𝐶 ∈ (0[,)+∞))
92 elrege0 13485 . . . . . . . 8 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
9391, 92sylib 217 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
9493simpld 493 . . . . . 6 (𝜑𝐶 ∈ ℝ)
95 remulcl 11243 . . . . . 6 ((2 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
9690, 94, 95sylancr 585 . . . . 5 (𝜑 → (2 · 𝐶) ∈ ℝ)
9796adantr 479 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝐶) ∈ ℝ)
983rpsqrtcld 15416 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
9997, 98rerpdivcld 13101 . . 3 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
10099adantr 479 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
101 ssun1 4173 . . . . . . . . . . 11 (1...(⌊‘𝑥)) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))
102101, 15sseqtrrid 4033 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘𝑥)) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑))))
103102sselda 3979 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))))
104 ovex 7457 . . . . . . . . . . 11 ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) ∈ V
10555, 52, 104fvmpt3i 7014 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
10632, 105syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
107103, 106syldan 589 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
10876, 10eleqtrdi 2836 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) ∈ (ℤ‘1))
109103, 37syldan 589 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
110107, 108, 109fsumser 15734 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
111110, 86eqeltrd 2826 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
112111, 39pncan2d 11623 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
113 reflcl 13816 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
11464, 113syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) ∈ ℝ)
115114ltp1d 12196 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) < ((⌊‘𝑥) + 1))
116 fzdisj 13582 . . . . . . . . 9 ((⌊‘𝑥) < ((⌊‘𝑥) + 1) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) = ∅)
117115, 116syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) = ∅)
118 fzfid 13993 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin)
119117, 15, 118, 37fsumsplit 15745 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
12078, 10eleqtrdi 2836 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘1))
121106, 120, 37fsumser 15734 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))))
122119, 121eqtr3d 2768 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))))
123122, 110oveq12d 7442 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥))))
124112, 123eqtr3d 2768 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥))))
125124fveq2d 6905 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥)))))
12679, 86, 83abs3difd 15465 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥)))) ≤ ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))))
127125, 126eqbrtrd 5175 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))))
12894ad2antrr 724 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
129 simplr 767 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
130129rpsqrtcld 15416 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑥) ∈ ℝ+)
131128, 130rerpdivcld 13101 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘𝑥)) ∈ ℝ)
132 2z 12646 . . . . . . . . . 10 2 ∈ ℤ
133 rpexpcl 14100 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
1343, 132, 133sylancl 584 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
135134adantr 479 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥↑2) ∈ ℝ+)
13667nnrpd 13068 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
137135, 136rpdivcld 13087 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑑) ∈ ℝ+)
138137rpsqrtcld 15416 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑑)) ∈ ℝ+)
139128, 138rerpdivcld 13101 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘((𝑥↑2) / 𝑑))) ∈ ℝ)
140 2fveq3 6906 . . . . . . . 8 (𝑦 = ((𝑥↑2) / 𝑑) → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))))
141140fvoveq1d 7446 . . . . . . 7 (𝑦 = ((𝑥↑2) / 𝑑) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) = (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)))
142 fveq2 6901 . . . . . . . 8 (𝑦 = ((𝑥↑2) / 𝑑) → (√‘𝑦) = (√‘((𝑥↑2) / 𝑑)))
143142oveq2d 7440 . . . . . . 7 (𝑦 = ((𝑥↑2) / 𝑑) → (𝐶 / (√‘𝑦)) = (𝐶 / (√‘((𝑥↑2) / 𝑑))))
144141, 143breq12d 5166 . . . . . 6 (𝑦 = ((𝑥↑2) / 𝑑) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘((𝑥↑2) / 𝑑)))))
145 dchrisum0.1 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
146145ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
147134rpred 13070 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ)
148 nndivre 12305 . . . . . . . 8 (((𝑥↑2) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((𝑥↑2) / 𝑑) ∈ ℝ)
149147, 66, 148syl2an 594 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑑) ∈ ℝ)
15012simpld 493 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ≤ ((𝑥↑2) / 𝑑))
15165, 64, 149, 74, 150letrd 11421 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ ((𝑥↑2) / 𝑑))
152 1re 11264 . . . . . . . 8 1 ∈ ℝ
153 elicopnf 13476 . . . . . . . 8 (1 ∈ ℝ → (((𝑥↑2) / 𝑑) ∈ (1[,)+∞) ↔ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 1 ≤ ((𝑥↑2) / 𝑑))))
154152, 153ax-mp 5 . . . . . . 7 (((𝑥↑2) / 𝑑) ∈ (1[,)+∞) ↔ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 1 ≤ ((𝑥↑2) / 𝑑)))
155149, 151, 154sylanbrc 581 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑑) ∈ (1[,)+∞))
156144, 146, 155rspcdva 3609 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘((𝑥↑2) / 𝑑))))
157130rpregt0d 13076 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑥) ∈ ℝ ∧ 0 < (√‘𝑥)))
158138rpregt0d 13076 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘((𝑥↑2) / 𝑑)) ∈ ℝ ∧ 0 < (√‘((𝑥↑2) / 𝑑))))
15993ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
160129rprege0d 13077 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
161137rprege0d 13077 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 0 ≤ ((𝑥↑2) / 𝑑)))
162 sqrtle 15265 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 0 ≤ ((𝑥↑2) / 𝑑))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ↔ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑))))
163160, 161, 162syl2anc 582 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ↔ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑))))
164150, 163mpbid 231 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑)))
165 lediv2a 12160 . . . . . 6 (((((√‘𝑥) ∈ ℝ ∧ 0 < (√‘𝑥)) ∧ ((√‘((𝑥↑2) / 𝑑)) ∈ ℝ ∧ 0 < (√‘((𝑥↑2) / 𝑑))) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑))) → (𝐶 / (√‘((𝑥↑2) / 𝑑))) ≤ (𝐶 / (√‘𝑥)))
166157, 158, 159, 164, 165syl31anc 1370 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘((𝑥↑2) / 𝑑))) ≤ (𝐶 / (√‘𝑥)))
16785, 139, 131, 156, 166letrd 11421 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘𝑥)))
16883, 86abssubd 15458 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)))
169 2fveq3 6906 . . . . . . . 8 (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
170169fvoveq1d 7446 . . . . . . 7 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)))
171 fveq2 6901 . . . . . . . 8 (𝑦 = 𝑥 → (√‘𝑦) = (√‘𝑥))
172171oveq2d 7440 . . . . . . 7 (𝑦 = 𝑥 → (𝐶 / (√‘𝑦)) = (𝐶 / (√‘𝑥)))
173170, 172breq12d 5166 . . . . . 6 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)) ≤ (𝐶 / (√‘𝑥))))
174 elicopnf 13476 . . . . . . . 8 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
175152, 174ax-mp 5 . . . . . . 7 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
17664, 74, 175sylanbrc 581 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ (1[,)+∞))
177173, 146, 176rspcdva 3609 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)) ≤ (𝐶 / (√‘𝑥)))
178168, 177eqbrtrd 5175 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))) ≤ (𝐶 / (√‘𝑥)))
17985, 88, 131, 131, 167, 178le2addd 11883 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ≤ ((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥))))
180 2cnd 12342 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
18194adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
182181recnd 11292 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℂ)
183182adantr 479 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℂ)
18498rpcnne0d 13079 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
185184adantr 479 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
186 divass 11941 . . . . 5 ((2 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0)) → ((2 · 𝐶) / (√‘𝑥)) = (2 · (𝐶 / (√‘𝑥))))
187180, 183, 185, 186syl3anc 1368 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) = (2 · (𝐶 / (√‘𝑥))))
188131recnd 11292 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘𝑥)) ∈ ℂ)
1891882timesd 12507 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (2 · (𝐶 / (√‘𝑥))) = ((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥))))
190187, 189eqtrd 2766 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) = ((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥))))
191179, 190breqtrrd 5181 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ≤ ((2 · 𝐶) / (√‘𝑥)))
19240, 89, 100, 127, 191letrd 11421 1 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  {crab 3419  cdif 3944  cun 3945  cin 3946  c0 4325  {csn 4633   class class class wbr 5153  cmpt 5236  wf 6550  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163  +∞cpnf 11295   < clt 11298  cle 11299  cmin 11494   / cdiv 11921  cn 12264  2c2 12319  0cn0 12524  cz 12610  cuz 12874  +crp 13028  [,)cico 13380  ...cfz 13538  cfl 13810  seqcseq 14021  cexp 14081  csqrt 15238  abscabs 15239  cli 15486  Σcsu 15690  Basecbs 17213  0gc0g 17454  ℤRHomczrh 21489  ℤ/nczn 21492  DChrcdchr 27261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237  ax-mulf 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-ec 8736  df-qs 8740  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-rp 13029  df-ico 13384  df-fz 13539  df-fzo 13682  df-fl 13812  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-sum 15691  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-0g 17456  df-imas 17523  df-qus 17524  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-grp 18931  df-minusg 18932  df-sbg 18933  df-mulg 19062  df-subg 19117  df-nsg 19118  df-eqg 19119  df-ghm 19207  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-cring 20219  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-rhm 20454  df-subrng 20528  df-subrg 20553  df-lmod 20838  df-lss 20909  df-lsp 20949  df-sra 21151  df-rgmod 21152  df-lidl 21197  df-rsp 21198  df-2idl 21239  df-cnfld 21344  df-zring 21437  df-zrh 21493  df-zn 21496  df-dchr 27262
This theorem is referenced by:  dchrisum0lem1  27545
  Copyright terms: Public domain W3C validator