MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1b Structured version   Visualization version   GIF version

Theorem dchrisum0lem1b 26105
Description: Lemma for dchrisum0lem1 26106. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
Assertion
Ref Expression
dchrisum0lem1b (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥)))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem1b
StepHypRef Expression
1 fzfid 13345 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin)
2 ssun2 4135 . . . . . . 7 (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))
3 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
43rprege0d 12435 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
5 flge0nn0 13194 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
64, 5syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℕ0)
7 nn0p1nn 11933 . . . . . . . . . . 11 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
86, 7syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ ℕ)
98adantr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ ℕ)
10 nnuz 12278 . . . . . . . . 9 ℕ = (ℤ‘1)
119, 10eleqtrdi 2926 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
12 dchrisum0lem1a 26076 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))))
1312simprd 499 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥)))
14 fzsplit2 12936 . . . . . . . 8 ((((⌊‘𝑥) + 1) ∈ (ℤ‘1) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
1511, 13, 14syl2anc 587 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
162, 15sseqtrrid 4006 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑))))
1716sselda 3953 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))))
18 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
19 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
20 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
21 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
22 rpvmasum2.w . . . . . . . . . . 11 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
2322ssrab3 4043 . . . . . . . . . 10 𝑊 ⊆ (𝐷 ∖ { 1 })
24 dchrisum0.b . . . . . . . . . 10 (𝜑𝑋𝑊)
2523, 24sseldi 3951 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
2625eldifad 3931 . . . . . . . 8 (𝜑𝑋𝐷)
2726ad3antrrr 729 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑋𝐷)
28 elfzelz 12911 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℤ)
2928adantl 485 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℤ)
3018, 19, 20, 21, 27, 29dchrzrhcl 25835 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
31 elfznn 12940 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℕ)
3231adantl 485 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℕ)
3332nnrpd 12426 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℝ+)
3433rpsqrtcld 14771 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℝ+)
3534rpcnd 12430 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℂ)
3634rpne0d 12433 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ≠ 0)
3730, 35, 36divcld 11414 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
3817, 37syldan 594 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
391, 38fsumcl 15090 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
4039abscld 14796 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ ℝ)
41 1zzd 12010 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
4226adantr 484 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
43 nnz 12001 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4443adantl 485 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
4518, 19, 20, 21, 42, 44dchrzrhcl 25835 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
46 nnrp 12397 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
4746adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
4847rpsqrtcld 14771 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℝ+)
4948rpcnd 12430 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ∈ ℂ)
5048rpne0d 12433 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (√‘𝑚) ≠ 0)
5145, 49, 50divcld 11414 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
52 dchrisum0lem1.f . . . . . . . . . . 11 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
53 2fveq3 6666 . . . . . . . . . . . . 13 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
54 fveq2 6661 . . . . . . . . . . . . 13 (𝑎 = 𝑚 → (√‘𝑎) = (√‘𝑚))
5553, 54oveq12d 7167 . . . . . . . . . . . 12 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5655cbvmptv 5155 . . . . . . . . . . 11 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5752, 56eqtri 2847 . . . . . . . . . 10 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
5851, 57fmptd 6869 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℂ)
5958ffvelrnda 6842 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
6010, 41, 59serf 13403 . . . . . . 7 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
6160ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → seq1( + , 𝐹):ℕ⟶ℂ)
623rpregt0d 12434 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6362adantr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6463simpld 498 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
65 1red 10640 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
66 elfznn 12940 . . . . . . . . . . 11 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
6766adantl 485 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
6867nnred 11649 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ)
6967nnge1d 11682 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑑)
703rpred 12428 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
71 fznnfl 13234 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7270, 71syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7372simplbda 503 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑𝑥)
7465, 68, 64, 69, 73letrd 10795 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑥)
75 flge1nn 13195 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
7664, 74, 75syl2anc 587 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) ∈ ℕ)
77 eluznn 12315 . . . . . . 7 (((⌊‘𝑥) ∈ ℕ ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℕ)
7876, 13, 77syl2anc 587 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℕ)
7961, 78ffvelrnd 6843 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) ∈ ℂ)
80 dchrisum0.s . . . . . . 7 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
81 climcl 14856 . . . . . . 7 (seq1( + , 𝐹) ⇝ 𝑆𝑆 ∈ ℂ)
8280, 81syl 17 . . . . . 6 (𝜑𝑆 ∈ ℂ)
8382ad2antrr 725 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑆 ∈ ℂ)
8479, 83subcld 10995 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆) ∈ ℂ)
8584abscld 14796 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ∈ ℝ)
8661, 76ffvelrnd 6843 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (seq1( + , 𝐹)‘(⌊‘𝑥)) ∈ ℂ)
8783, 86subcld 10995 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))) ∈ ℂ)
8887abscld 14796 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))) ∈ ℝ)
8985, 88readdcld 10668 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ∈ ℝ)
90 2re 11708 . . . . . 6 2 ∈ ℝ
91 dchrisum0.c . . . . . . . 8 (𝜑𝐶 ∈ (0[,)+∞))
92 elrege0 12841 . . . . . . . 8 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
9391, 92sylib 221 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
9493simpld 498 . . . . . 6 (𝜑𝐶 ∈ ℝ)
95 remulcl 10620 . . . . . 6 ((2 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
9690, 94, 95sylancr 590 . . . . 5 (𝜑 → (2 · 𝐶) ∈ ℝ)
9796adantr 484 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝐶) ∈ ℝ)
983rpsqrtcld 14771 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
9997, 98rerpdivcld 12459 . . 3 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
10099adantr 484 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
101 ssun1 4134 . . . . . . . . . . 11 (1...(⌊‘𝑥)) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))
102101, 15sseqtrrid 4006 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘𝑥)) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑))))
103102sselda 3953 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))))
104 ovex 7182 . . . . . . . . . . 11 ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) ∈ V
10555, 52, 104fvmpt3i 6764 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
10632, 105syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
107103, 106syldan 594 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
10876, 10eleqtrdi 2926 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) ∈ (ℤ‘1))
109103, 37syldan 594 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
110107, 108, 109fsumser 15087 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
111110, 86eqeltrd 2916 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
112111, 39pncan2d 10997 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)))
113 reflcl 13170 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
11464, 113syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) ∈ ℝ)
115114ltp1d 11568 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑥) < ((⌊‘𝑥) + 1))
116 fzdisj 12938 . . . . . . . . 9 ((⌊‘𝑥) < ((⌊‘𝑥) + 1) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) = ∅)
117115, 116syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) = ∅)
118 fzfid 13345 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin)
119117, 15, 118, 37fsumsplit 15097 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))))
12078, 10eleqtrdi 2926 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘1))
121106, 120, 37fsumser 15087 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))))
122119, 121eqtr3d 2861 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))))
123122, 110oveq12d 7167 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) − Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥))))
124112, 123eqtr3d 2861 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) = ((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥))))
125124fveq2d 6665 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) = (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥)))))
12679, 86, 83abs3difd 14820 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − (seq1( + , 𝐹)‘(⌊‘𝑥)))) ≤ ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))))
127125, 126eqbrtrd 5074 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))))
12894ad2antrr 725 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
129 simplr 768 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
130129rpsqrtcld 14771 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑥) ∈ ℝ+)
131128, 130rerpdivcld 12459 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘𝑥)) ∈ ℝ)
132 2z 12011 . . . . . . . . . 10 2 ∈ ℤ
133 rpexpcl 13453 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
1343, 132, 133sylancl 589 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
135134adantr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥↑2) ∈ ℝ+)
13667nnrpd 12426 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
137135, 136rpdivcld 12445 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑑) ∈ ℝ+)
138137rpsqrtcld 14771 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑑)) ∈ ℝ+)
139128, 138rerpdivcld 12459 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘((𝑥↑2) / 𝑑))) ∈ ℝ)
140 2fveq3 6666 . . . . . . . 8 (𝑦 = ((𝑥↑2) / 𝑑) → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))))
141140fvoveq1d 7171 . . . . . . 7 (𝑦 = ((𝑥↑2) / 𝑑) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) = (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)))
142 fveq2 6661 . . . . . . . 8 (𝑦 = ((𝑥↑2) / 𝑑) → (√‘𝑦) = (√‘((𝑥↑2) / 𝑑)))
143142oveq2d 7165 . . . . . . 7 (𝑦 = ((𝑥↑2) / 𝑑) → (𝐶 / (√‘𝑦)) = (𝐶 / (√‘((𝑥↑2) / 𝑑))))
144141, 143breq12d 5065 . . . . . 6 (𝑦 = ((𝑥↑2) / 𝑑) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘((𝑥↑2) / 𝑑)))))
145 dchrisum0.1 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
146145ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
147134rpred 12428 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ)
148 nndivre 11675 . . . . . . . 8 (((𝑥↑2) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((𝑥↑2) / 𝑑) ∈ ℝ)
149147, 66, 148syl2an 598 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑑) ∈ ℝ)
15012simpld 498 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ≤ ((𝑥↑2) / 𝑑))
15165, 64, 149, 74, 150letrd 10795 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ ((𝑥↑2) / 𝑑))
152 1re 10639 . . . . . . . 8 1 ∈ ℝ
153 elicopnf 12832 . . . . . . . 8 (1 ∈ ℝ → (((𝑥↑2) / 𝑑) ∈ (1[,)+∞) ↔ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 1 ≤ ((𝑥↑2) / 𝑑))))
154152, 153ax-mp 5 . . . . . . 7 (((𝑥↑2) / 𝑑) ∈ (1[,)+∞) ↔ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 1 ≤ ((𝑥↑2) / 𝑑)))
155149, 151, 154sylanbrc 586 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑑) ∈ (1[,)+∞))
156144, 146, 155rspcdva 3611 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘((𝑥↑2) / 𝑑))))
157130rpregt0d 12434 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑥) ∈ ℝ ∧ 0 < (√‘𝑥)))
158138rpregt0d 12434 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘((𝑥↑2) / 𝑑)) ∈ ℝ ∧ 0 < (√‘((𝑥↑2) / 𝑑))))
15993ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
160129rprege0d 12435 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
161137rprege0d 12435 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 0 ≤ ((𝑥↑2) / 𝑑)))
162 sqrtle 14620 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (((𝑥↑2) / 𝑑) ∈ ℝ ∧ 0 ≤ ((𝑥↑2) / 𝑑))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ↔ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑))))
163160, 161, 162syl2anc 587 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ↔ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑))))
164150, 163mpbid 235 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑)))
165 lediv2a 11532 . . . . . 6 (((((√‘𝑥) ∈ ℝ ∧ 0 < (√‘𝑥)) ∧ ((√‘((𝑥↑2) / 𝑑)) ∈ ℝ ∧ 0 < (√‘((𝑥↑2) / 𝑑))) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ (√‘𝑥) ≤ (√‘((𝑥↑2) / 𝑑))) → (𝐶 / (√‘((𝑥↑2) / 𝑑))) ≤ (𝐶 / (√‘𝑥)))
166157, 158, 159, 164, 165syl31anc 1370 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘((𝑥↑2) / 𝑑))) ≤ (𝐶 / (√‘𝑥)))
16785, 139, 131, 156, 166letrd 10795 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) ≤ (𝐶 / (√‘𝑥)))
16883, 86abssubd 14813 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)))
169 2fveq3 6666 . . . . . . . 8 (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
170169fvoveq1d 7171 . . . . . . 7 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)))
171 fveq2 6661 . . . . . . . 8 (𝑦 = 𝑥 → (√‘𝑦) = (√‘𝑥))
172171oveq2d 7165 . . . . . . 7 (𝑦 = 𝑥 → (𝐶 / (√‘𝑦)) = (𝐶 / (√‘𝑥)))
173170, 172breq12d 5065 . . . . . 6 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)) ≤ (𝐶 / (√‘𝑥))))
174 elicopnf 12832 . . . . . . . 8 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
175152, 174ax-mp 5 . . . . . . 7 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
17664, 74, 175sylanbrc 586 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ (1[,)+∞))
177173, 146, 176rspcdva 3611 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑆)) ≤ (𝐶 / (√‘𝑥)))
178168, 177eqbrtrd 5074 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥)))) ≤ (𝐶 / (√‘𝑥)))
17985, 88, 131, 131, 167, 178le2addd 11257 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ≤ ((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥))))
180 2cnd 11712 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
18194adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
182181recnd 10667 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℂ)
183182adantr 484 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℂ)
18498rpcnne0d 12437 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
185184adantr 484 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
186 divass 11314 . . . . 5 ((2 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0)) → ((2 · 𝐶) / (√‘𝑥)) = (2 · (𝐶 / (√‘𝑥))))
187180, 183, 185, 186syl3anc 1368 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) = (2 · (𝐶 / (√‘𝑥))))
188131recnd 10667 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (√‘𝑥)) ∈ ℂ)
1891882timesd 11877 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (2 · (𝐶 / (√‘𝑥))) = ((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥))))
190187, 189eqtrd 2859 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) = ((𝐶 / (√‘𝑥)) + (𝐶 / (√‘𝑥))))
191179, 190breqtrrd 5080 . 2 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((seq1( + , 𝐹)‘(⌊‘((𝑥↑2) / 𝑑))) − 𝑆)) + (abs‘(𝑆 − (seq1( + , 𝐹)‘(⌊‘𝑥))))) ≤ ((2 · 𝐶) / (√‘𝑥)))
19240, 89, 100, 127, 191letrd 10795 1 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  wral 3133  {crab 3137  cdif 3916  cun 3917  cin 3918  c0 4276  {csn 4550   class class class wbr 5052  cmpt 5132  wf 6339  cfv 6343  (class class class)co 7149  cc 10533  cr 10534  0cc0 10535  1c1 10536   + caddc 10538   · cmul 10540  +∞cpnf 10670   < clt 10673  cle 10674  cmin 10868   / cdiv 11295  cn 11634  2c2 11689  0cn0 11894  cz 11978  cuz 12240  +crp 12386  [,)cico 12737  ...cfz 12894  cfl 13164  seqcseq 13373  cexp 13434  csqrt 14592  abscabs 14593  cli 14841  Σcsu 15042  Basecbs 16483  0gc0g 16713  ℤRHomczrh 20200  ℤ/nczn 20203  DChrcdchr 25822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-ec 8287  df-qs 8291  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-rp 12387  df-ico 12741  df-fz 12895  df-fzo 13038  df-fl 13166  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-imas 16781  df-qus 16782  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-nsg 18277  df-eqg 18278  df-ghm 18356  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-rnghom 19470  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-rsp 19947  df-2idl 20005  df-cnfld 20099  df-zring 20171  df-zrh 20204  df-zn 20207  df-dchr 25823
This theorem is referenced by:  dchrisum0lem1  26106
  Copyright terms: Public domain W3C validator