| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgt0d | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpgt0 12971 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5110 0cc0 11075 < clt 11215 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-rp 12959 |
| This theorem is referenced by: rpregt0d 13008 ltmulgt11d 13037 ltmulgt12d 13038 gt0divd 13039 ge0divd 13040 lediv12ad 13061 prodge0rd 13067 expgt0 14067 nnesq 14199 bccl2 14295 01sqrexlem7 15221 sqrtgt0d 15386 iseralt 15658 fsumlt 15773 geomulcvg 15849 eirrlem 16179 sqrt2irrlem 16223 prmind2 16662 4sqlem11 16933 4sqlem12 16934 ssblex 24323 nrginvrcn 24587 mulc1cncf 24805 nmoleub2lem2 25023 itg2mulclem 25654 itggt0 25752 dvgt0 25916 ftc1lem5 25954 aaliou3lem2 26258 abelthlem8 26356 tanord 26454 tanregt0 26455 logccv 26579 cxpgt0d 26654 cxpcn3lem 26664 jensenlem2 26905 dmlogdmgm 26941 basellem1 26998 sgmnncl 27064 chpdifbndlem2 27472 pntibndlem1 27507 pntibnd 27511 pntlemc 27513 abvcxp 27533 ostth2lem1 27536 ostth2lem3 27553 ostth2 27555 sgnmulrp2 32768 xrge0iifhom 33934 omssubadd 34298 signsply0 34549 sinccvglem 35666 unblimceq0lem 36501 unbdqndv2lem2 36505 knoppndvlem14 36520 taupilem1 37316 poimirlem29 37650 heicant 37656 itggt0cn 37691 ftc1cnnc 37693 bfplem1 37823 rrncmslem 37833 aks4d1p1 42071 aks6d1c2 42125 irrapxlem4 42820 irrapxlem5 42821 imo72b2lem1 44165 dvdivbd 45928 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 stoweidlem1 46006 stoweidlem7 46012 stoweidlem11 46016 stoweidlem25 46030 stoweidlem26 46031 stoweidlem34 46039 stoweidlem49 46054 stoweidlem52 46057 stoweidlem60 46065 wallispi 46075 stirlinglem6 46084 stirlinglem11 46089 fourierdlem30 46142 qndenserrnbl 46300 ovnsubaddlem1 46575 hoiqssbllem2 46628 pimrecltpos 46713 smfmullem1 46796 smfmullem2 46797 smfmullem3 46798 |
| Copyright terms: Public domain | W3C validator |