| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgt0d | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpgt0 12924 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5095 0cc0 11028 < clt 11168 ℝ+crp 12911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-rp 12912 |
| This theorem is referenced by: rpregt0d 12961 ltmulgt11d 12990 ltmulgt12d 12991 gt0divd 12992 ge0divd 12993 lediv12ad 13014 prodge0rd 13020 expgt0 14020 nnesq 14152 bccl2 14248 01sqrexlem7 15173 sqrtgt0d 15338 iseralt 15610 fsumlt 15725 geomulcvg 15801 eirrlem 16131 sqrt2irrlem 16175 prmind2 16614 4sqlem11 16885 4sqlem12 16886 ssblex 24332 nrginvrcn 24596 mulc1cncf 24814 nmoleub2lem2 25032 itg2mulclem 25663 itggt0 25761 dvgt0 25925 ftc1lem5 25963 aaliou3lem2 26267 abelthlem8 26365 tanord 26463 tanregt0 26464 logccv 26588 cxpgt0d 26663 cxpcn3lem 26673 jensenlem2 26914 dmlogdmgm 26950 basellem1 27007 sgmnncl 27073 chpdifbndlem2 27481 pntibndlem1 27516 pntibnd 27520 pntlemc 27522 abvcxp 27542 ostth2lem1 27545 ostth2lem3 27562 ostth2 27564 sgnmulrp2 32794 xrge0iifhom 33903 omssubadd 34267 signsply0 34518 sinccvglem 35644 unblimceq0lem 36479 unbdqndv2lem2 36483 knoppndvlem14 36498 taupilem1 37294 poimirlem29 37628 heicant 37634 itggt0cn 37669 ftc1cnnc 37671 bfplem1 37801 rrncmslem 37811 aks4d1p1 42049 aks6d1c2 42103 irrapxlem4 42798 irrapxlem5 42799 imo72b2lem1 44142 dvdivbd 45905 ioodvbdlimc1lem2 45914 ioodvbdlimc2lem 45916 stoweidlem1 45983 stoweidlem7 45989 stoweidlem11 45993 stoweidlem25 46007 stoweidlem26 46008 stoweidlem34 46016 stoweidlem49 46031 stoweidlem52 46034 stoweidlem60 46042 wallispi 46052 stirlinglem6 46061 stirlinglem11 46066 fourierdlem30 46119 qndenserrnbl 46277 ovnsubaddlem1 46552 hoiqssbllem2 46605 pimrecltpos 46690 smfmullem1 46773 smfmullem2 46774 smfmullem3 46775 |
| Copyright terms: Public domain | W3C validator |