| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgt0d | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpgt0 12900 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 0cc0 11003 < clt 11143 ℝ+crp 12887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-rp 12888 |
| This theorem is referenced by: rpregt0d 12937 ltmulgt11d 12966 ltmulgt12d 12967 gt0divd 12968 ge0divd 12969 lediv12ad 12990 prodge0rd 12996 expgt0 13999 nnesq 14131 bccl2 14227 01sqrexlem7 15152 sqrtgt0d 15317 iseralt 15589 fsumlt 15704 geomulcvg 15780 eirrlem 16110 sqrt2irrlem 16154 prmind2 16593 4sqlem11 16864 4sqlem12 16865 ssblex 24341 nrginvrcn 24605 mulc1cncf 24823 nmoleub2lem2 25041 itg2mulclem 25672 itggt0 25770 dvgt0 25934 ftc1lem5 25972 aaliou3lem2 26276 abelthlem8 26374 tanord 26472 tanregt0 26473 logccv 26597 cxpgt0d 26672 cxpcn3lem 26682 jensenlem2 26923 dmlogdmgm 26959 basellem1 27016 sgmnncl 27082 chpdifbndlem2 27490 pntibndlem1 27525 pntibnd 27529 pntlemc 27531 abvcxp 27551 ostth2lem1 27554 ostth2lem3 27571 ostth2 27573 sgnmulrp2 32814 xrge0iifhom 33945 omssubadd 34308 signsply0 34559 sinccvglem 35704 unblimceq0lem 36539 unbdqndv2lem2 36543 knoppndvlem14 36558 taupilem1 37354 poimirlem29 37688 heicant 37694 itggt0cn 37729 ftc1cnnc 37731 bfplem1 37861 rrncmslem 37871 aks4d1p1 42108 aks6d1c2 42162 irrapxlem4 42857 irrapxlem5 42858 imo72b2lem1 44201 dvdivbd 45960 ioodvbdlimc1lem2 45969 ioodvbdlimc2lem 45971 stoweidlem1 46038 stoweidlem7 46044 stoweidlem11 46048 stoweidlem25 46062 stoweidlem26 46063 stoweidlem34 46071 stoweidlem49 46086 stoweidlem52 46089 stoweidlem60 46097 wallispi 46107 stirlinglem6 46116 stirlinglem11 46121 fourierdlem30 46174 qndenserrnbl 46332 ovnsubaddlem1 46607 hoiqssbllem2 46660 pimrecltpos 46745 smfmullem1 46828 smfmullem2 46829 smfmullem3 46830 |
| Copyright terms: Public domain | W3C validator |