| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgt0d | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpgt0 12964 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 0cc0 11068 < clt 11208 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-rp 12952 |
| This theorem is referenced by: rpregt0d 13001 ltmulgt11d 13030 ltmulgt12d 13031 gt0divd 13032 ge0divd 13033 lediv12ad 13054 prodge0rd 13060 expgt0 14060 nnesq 14192 bccl2 14288 01sqrexlem7 15214 sqrtgt0d 15379 iseralt 15651 fsumlt 15766 geomulcvg 15842 eirrlem 16172 sqrt2irrlem 16216 prmind2 16655 4sqlem11 16926 4sqlem12 16927 ssblex 24316 nrginvrcn 24580 mulc1cncf 24798 nmoleub2lem2 25016 itg2mulclem 25647 itggt0 25745 dvgt0 25909 ftc1lem5 25947 aaliou3lem2 26251 abelthlem8 26349 tanord 26447 tanregt0 26448 logccv 26572 cxpgt0d 26647 cxpcn3lem 26657 jensenlem2 26898 dmlogdmgm 26934 basellem1 26991 sgmnncl 27057 chpdifbndlem2 27465 pntibndlem1 27500 pntibnd 27504 pntlemc 27506 abvcxp 27526 ostth2lem1 27529 ostth2lem3 27546 ostth2 27548 sgnmulrp2 32761 xrge0iifhom 33927 omssubadd 34291 signsply0 34542 sinccvglem 35659 unblimceq0lem 36494 unbdqndv2lem2 36498 knoppndvlem14 36513 taupilem1 37309 poimirlem29 37643 heicant 37649 itggt0cn 37684 ftc1cnnc 37686 bfplem1 37816 rrncmslem 37826 aks4d1p1 42064 aks6d1c2 42118 irrapxlem4 42813 irrapxlem5 42814 imo72b2lem1 44158 dvdivbd 45921 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 stoweidlem1 45999 stoweidlem7 46005 stoweidlem11 46009 stoweidlem25 46023 stoweidlem26 46024 stoweidlem34 46032 stoweidlem49 46047 stoweidlem52 46050 stoweidlem60 46058 wallispi 46068 stirlinglem6 46077 stirlinglem11 46082 fourierdlem30 46135 qndenserrnbl 46293 ovnsubaddlem1 46568 hoiqssbllem2 46621 pimrecltpos 46706 smfmullem1 46789 smfmullem2 46790 smfmullem3 46791 |
| Copyright terms: Public domain | W3C validator |