| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgt0d | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpgt0 13013 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5116 0cc0 11121 < clt 11261 ℝ+crp 13000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-rp 13001 |
| This theorem is referenced by: rpregt0d 13049 ltmulgt11d 13078 ltmulgt12d 13079 gt0divd 13080 ge0divd 13081 lediv12ad 13102 prodge0rd 13108 expgt0 14102 nnesq 14233 bccl2 14329 01sqrexlem7 15254 sqrtgt0d 15418 iseralt 15688 fsumlt 15803 geomulcvg 15879 eirrlem 16207 sqrt2irrlem 16251 prmind2 16689 4sqlem11 16960 4sqlem12 16961 ssblex 24352 nrginvrcn 24616 mulc1cncf 24834 nmoleub2lem2 25052 itg2mulclem 25684 itggt0 25782 dvgt0 25946 ftc1lem5 25984 aaliou3lem2 26288 abelthlem8 26386 tanord 26483 tanregt0 26484 logccv 26608 cxpgt0d 26683 cxpcn3lem 26693 jensenlem2 26934 dmlogdmgm 26970 basellem1 27027 sgmnncl 27093 chpdifbndlem2 27501 pntibndlem1 27536 pntibnd 27540 pntlemc 27542 abvcxp 27562 ostth2lem1 27565 ostth2lem3 27582 ostth2 27584 xrge0iifhom 33876 omssubadd 34240 sgnmulrp2 34484 signsply0 34504 sinccvglem 35615 unblimceq0lem 36445 unbdqndv2lem2 36449 knoppndvlem14 36464 taupilem1 37260 poimirlem29 37594 heicant 37600 itggt0cn 37635 ftc1cnnc 37637 bfplem1 37767 rrncmslem 37777 aks4d1p1 42011 aks6d1c2 42065 irrapxlem4 42773 irrapxlem5 42774 imo72b2lem1 44118 dvdivbd 45882 ioodvbdlimc1lem2 45891 ioodvbdlimc2lem 45893 stoweidlem1 45960 stoweidlem7 45966 stoweidlem11 45970 stoweidlem25 45984 stoweidlem26 45985 stoweidlem34 45993 stoweidlem49 46008 stoweidlem52 46011 stoweidlem60 46019 wallispi 46029 stirlinglem6 46038 stirlinglem11 46043 fourierdlem30 46096 qndenserrnbl 46254 ovnsubaddlem1 46529 hoiqssbllem2 46582 pimrecltpos 46667 smfmullem1 46750 smfmullem2 46751 smfmullem3 46752 |
| Copyright terms: Public domain | W3C validator |