Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpgt0d | Structured version Visualization version GIF version |
Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpgt0 12724 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5078 0cc0 10855 < clt 10993 ℝ+crp 12712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-rp 12713 |
This theorem is referenced by: rpregt0d 12760 ltmulgt11d 12789 ltmulgt12d 12790 gt0divd 12791 ge0divd 12792 lediv12ad 12813 prodge0rd 12819 expgt0 13797 nnesq 13923 bccl2 14018 sqrlem7 14941 sqrtgt0d 15105 iseralt 15377 fsumlt 15493 geomulcvg 15569 eirrlem 15894 sqrt2irrlem 15938 prmind2 16371 4sqlem11 16637 4sqlem12 16638 ssblex 23562 nrginvrcn 23837 mulc1cncf 24049 nmoleub2lem2 24260 itg2mulclem 24892 itggt0 24989 dvgt0 25149 ftc1lem5 25185 aaliou3lem2 25484 abelthlem8 25579 tanord 25675 tanregt0 25676 logccv 25799 cxpcn3lem 25881 jensenlem2 26118 dmlogdmgm 26154 basellem1 26211 sgmnncl 26277 chpdifbndlem2 26683 pntibndlem1 26718 pntibnd 26722 pntlemc 26724 abvcxp 26744 ostth2lem1 26747 ostth2lem3 26764 ostth2 26766 xrge0iifhom 31866 omssubadd 32246 sgnmulrp2 32489 signsply0 32509 sinccvglem 33609 unblimceq0lem 34665 unbdqndv2lem2 34669 knoppndvlem14 34684 taupilem1 35471 poimirlem29 35785 heicant 35791 itggt0cn 35826 ftc1cnnc 35828 bfplem1 35959 rrncmslem 35969 aks4d1p1 40064 cxpgt0d 40324 irrapxlem4 40627 irrapxlem5 40628 imo72b2lem1 41733 dvdivbd 43418 ioodvbdlimc1lem2 43427 ioodvbdlimc2lem 43429 stoweidlem1 43496 stoweidlem7 43502 stoweidlem11 43506 stoweidlem25 43520 stoweidlem26 43521 stoweidlem34 43529 stoweidlem49 43544 stoweidlem52 43547 stoweidlem60 43555 wallispi 43565 stirlinglem6 43574 stirlinglem11 43579 fourierdlem30 43632 qndenserrnbl 43790 ovnsubaddlem1 44062 hoiqssbllem2 44115 pimrecltpos 44197 smfmullem1 44276 smfmullem2 44277 smfmullem3 44278 |
Copyright terms: Public domain | W3C validator |