| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgt0d | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpgt0 12905 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5093 0cc0 11013 < clt 11153 ℝ+crp 12892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-rp 12893 |
| This theorem is referenced by: rpregt0d 12942 ltmulgt11d 12971 ltmulgt12d 12972 gt0divd 12973 ge0divd 12974 lediv12ad 12995 prodge0rd 13001 expgt0 14004 nnesq 14136 bccl2 14232 01sqrexlem7 15157 sqrtgt0d 15322 iseralt 15594 fsumlt 15709 geomulcvg 15785 eirrlem 16115 sqrt2irrlem 16159 prmind2 16598 4sqlem11 16869 4sqlem12 16870 ssblex 24344 nrginvrcn 24608 mulc1cncf 24826 nmoleub2lem2 25044 itg2mulclem 25675 itggt0 25773 dvgt0 25937 ftc1lem5 25975 aaliou3lem2 26279 abelthlem8 26377 tanord 26475 tanregt0 26476 logccv 26600 cxpgt0d 26675 cxpcn3lem 26685 jensenlem2 26926 dmlogdmgm 26962 basellem1 27019 sgmnncl 27085 chpdifbndlem2 27493 pntibndlem1 27528 pntibnd 27532 pntlemc 27534 abvcxp 27554 ostth2lem1 27557 ostth2lem3 27574 ostth2 27576 sgnmulrp2 32824 xrge0iifhom 33971 omssubadd 34334 signsply0 34585 sinccvglem 35737 unblimceq0lem 36571 unbdqndv2lem2 36575 knoppndvlem14 36590 taupilem1 37386 poimirlem29 37709 heicant 37715 itggt0cn 37750 ftc1cnnc 37752 bfplem1 37882 rrncmslem 37892 aks4d1p1 42189 aks6d1c2 42243 irrapxlem4 42942 irrapxlem5 42943 imo72b2lem1 44286 dvdivbd 46045 ioodvbdlimc1lem2 46054 ioodvbdlimc2lem 46056 stoweidlem1 46123 stoweidlem7 46129 stoweidlem11 46133 stoweidlem25 46147 stoweidlem26 46148 stoweidlem34 46156 stoweidlem49 46171 stoweidlem52 46174 stoweidlem60 46182 wallispi 46192 stirlinglem6 46201 stirlinglem11 46206 fourierdlem30 46259 qndenserrnbl 46417 ovnsubaddlem1 46692 hoiqssbllem2 46745 pimrecltpos 46830 smfmullem1 46913 smfmullem2 46914 smfmullem3 46915 |
| Copyright terms: Public domain | W3C validator |