| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgt0d | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpgt0 13021 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5119 0cc0 11129 < clt 11269 ℝ+crp 13008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-rp 13009 |
| This theorem is referenced by: rpregt0d 13057 ltmulgt11d 13086 ltmulgt12d 13087 gt0divd 13088 ge0divd 13089 lediv12ad 13110 prodge0rd 13116 expgt0 14113 nnesq 14245 bccl2 14341 01sqrexlem7 15267 sqrtgt0d 15431 iseralt 15701 fsumlt 15816 geomulcvg 15892 eirrlem 16222 sqrt2irrlem 16266 prmind2 16704 4sqlem11 16975 4sqlem12 16976 ssblex 24367 nrginvrcn 24631 mulc1cncf 24849 nmoleub2lem2 25067 itg2mulclem 25699 itggt0 25797 dvgt0 25961 ftc1lem5 25999 aaliou3lem2 26303 abelthlem8 26401 tanord 26499 tanregt0 26500 logccv 26624 cxpgt0d 26699 cxpcn3lem 26709 jensenlem2 26950 dmlogdmgm 26986 basellem1 27043 sgmnncl 27109 chpdifbndlem2 27517 pntibndlem1 27552 pntibnd 27556 pntlemc 27558 abvcxp 27578 ostth2lem1 27581 ostth2lem3 27598 ostth2 27600 sgnmulrp2 32815 xrge0iifhom 33968 omssubadd 34332 signsply0 34583 sinccvglem 35694 unblimceq0lem 36524 unbdqndv2lem2 36528 knoppndvlem14 36543 taupilem1 37339 poimirlem29 37673 heicant 37679 itggt0cn 37714 ftc1cnnc 37716 bfplem1 37846 rrncmslem 37856 aks4d1p1 42089 aks6d1c2 42143 irrapxlem4 42848 irrapxlem5 42849 imo72b2lem1 44193 dvdivbd 45952 ioodvbdlimc1lem2 45961 ioodvbdlimc2lem 45963 stoweidlem1 46030 stoweidlem7 46036 stoweidlem11 46040 stoweidlem25 46054 stoweidlem26 46055 stoweidlem34 46063 stoweidlem49 46078 stoweidlem52 46081 stoweidlem60 46089 wallispi 46099 stirlinglem6 46108 stirlinglem11 46113 fourierdlem30 46166 qndenserrnbl 46324 ovnsubaddlem1 46599 hoiqssbllem2 46652 pimrecltpos 46737 smfmullem1 46820 smfmullem2 46821 smfmullem3 46822 |
| Copyright terms: Public domain | W3C validator |