Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpgt0d | Structured version Visualization version GIF version |
Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpgt0 12742 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 0cc0 10871 < clt 11009 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-rp 12731 |
This theorem is referenced by: rpregt0d 12778 ltmulgt11d 12807 ltmulgt12d 12808 gt0divd 12809 ge0divd 12810 lediv12ad 12831 prodge0rd 12837 expgt0 13816 nnesq 13942 bccl2 14037 sqrlem7 14960 sqrtgt0d 15124 iseralt 15396 fsumlt 15512 geomulcvg 15588 eirrlem 15913 sqrt2irrlem 15957 prmind2 16390 4sqlem11 16656 4sqlem12 16657 ssblex 23581 nrginvrcn 23856 mulc1cncf 24068 nmoleub2lem2 24279 itg2mulclem 24911 itggt0 25008 dvgt0 25168 ftc1lem5 25204 aaliou3lem2 25503 abelthlem8 25598 tanord 25694 tanregt0 25695 logccv 25818 cxpcn3lem 25900 jensenlem2 26137 dmlogdmgm 26173 basellem1 26230 sgmnncl 26296 chpdifbndlem2 26702 pntibndlem1 26737 pntibnd 26741 pntlemc 26743 abvcxp 26763 ostth2lem1 26766 ostth2lem3 26783 ostth2 26785 xrge0iifhom 31887 omssubadd 32267 sgnmulrp2 32510 signsply0 32530 sinccvglem 33630 unblimceq0lem 34686 unbdqndv2lem2 34690 knoppndvlem14 34705 taupilem1 35492 poimirlem29 35806 heicant 35812 itggt0cn 35847 ftc1cnnc 35849 bfplem1 35980 rrncmslem 35990 aks4d1p1 40084 cxpgt0d 40344 irrapxlem4 40647 irrapxlem5 40648 imo72b2lem1 41780 dvdivbd 43464 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 stoweidlem1 43542 stoweidlem7 43548 stoweidlem11 43552 stoweidlem25 43566 stoweidlem26 43567 stoweidlem34 43575 stoweidlem49 43590 stoweidlem52 43593 stoweidlem60 43601 wallispi 43611 stirlinglem6 43620 stirlinglem11 43625 fourierdlem30 43678 qndenserrnbl 43836 ovnsubaddlem1 44108 hoiqssbllem2 44161 pimrecltpos 44245 smfmullem1 44325 smfmullem2 44326 smfmullem3 44327 |
Copyright terms: Public domain | W3C validator |