![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpgt0d | Structured version Visualization version GIF version |
Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpgt0 13069 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 0cc0 11184 < clt 11324 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-rp 13058 |
This theorem is referenced by: rpregt0d 13105 ltmulgt11d 13134 ltmulgt12d 13135 gt0divd 13136 ge0divd 13137 lediv12ad 13158 prodge0rd 13164 expgt0 14146 nnesq 14276 bccl2 14372 01sqrexlem7 15297 sqrtgt0d 15461 iseralt 15733 fsumlt 15848 geomulcvg 15924 eirrlem 16252 sqrt2irrlem 16296 prmind2 16732 4sqlem11 17002 4sqlem12 17003 ssblex 24459 nrginvrcn 24734 mulc1cncf 24950 nmoleub2lem2 25168 itg2mulclem 25801 itggt0 25899 dvgt0 26063 ftc1lem5 26101 aaliou3lem2 26403 abelthlem8 26501 tanord 26598 tanregt0 26599 logccv 26723 cxpgt0d 26798 cxpcn3lem 26808 jensenlem2 27049 dmlogdmgm 27085 basellem1 27142 sgmnncl 27208 chpdifbndlem2 27616 pntibndlem1 27651 pntibnd 27655 pntlemc 27657 abvcxp 27677 ostth2lem1 27680 ostth2lem3 27697 ostth2 27699 xrge0iifhom 33883 omssubadd 34265 sgnmulrp2 34508 signsply0 34528 sinccvglem 35640 unblimceq0lem 36472 unbdqndv2lem2 36476 knoppndvlem14 36491 taupilem1 37287 poimirlem29 37609 heicant 37615 itggt0cn 37650 ftc1cnnc 37652 bfplem1 37782 rrncmslem 37792 aks4d1p1 42033 aks6d1c2 42087 irrapxlem4 42781 irrapxlem5 42782 imo72b2lem1 44131 dvdivbd 45844 ioodvbdlimc1lem2 45853 ioodvbdlimc2lem 45855 stoweidlem1 45922 stoweidlem7 45928 stoweidlem11 45932 stoweidlem25 45946 stoweidlem26 45947 stoweidlem34 45955 stoweidlem49 45970 stoweidlem52 45973 stoweidlem60 45981 wallispi 45991 stirlinglem6 46000 stirlinglem11 46005 fourierdlem30 46058 qndenserrnbl 46216 ovnsubaddlem1 46491 hoiqssbllem2 46544 pimrecltpos 46629 smfmullem1 46712 smfmullem2 46713 smfmullem3 46714 |
Copyright terms: Public domain | W3C validator |