![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpgt0d | Structured version Visualization version GIF version |
Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpgt0 13045 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5148 0cc0 11153 < clt 11293 ℝ+crp 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-rp 13033 |
This theorem is referenced by: rpregt0d 13081 ltmulgt11d 13110 ltmulgt12d 13111 gt0divd 13112 ge0divd 13113 lediv12ad 13134 prodge0rd 13140 expgt0 14133 nnesq 14263 bccl2 14359 01sqrexlem7 15284 sqrtgt0d 15448 iseralt 15718 fsumlt 15833 geomulcvg 15909 eirrlem 16237 sqrt2irrlem 16281 prmind2 16719 4sqlem11 16989 4sqlem12 16990 ssblex 24454 nrginvrcn 24729 mulc1cncf 24945 nmoleub2lem2 25163 itg2mulclem 25796 itggt0 25894 dvgt0 26058 ftc1lem5 26096 aaliou3lem2 26400 abelthlem8 26498 tanord 26595 tanregt0 26596 logccv 26720 cxpgt0d 26795 cxpcn3lem 26805 jensenlem2 27046 dmlogdmgm 27082 basellem1 27139 sgmnncl 27205 chpdifbndlem2 27613 pntibndlem1 27648 pntibnd 27652 pntlemc 27654 abvcxp 27674 ostth2lem1 27677 ostth2lem3 27694 ostth2 27696 xrge0iifhom 33898 omssubadd 34282 sgnmulrp2 34525 signsply0 34545 sinccvglem 35657 unblimceq0lem 36489 unbdqndv2lem2 36493 knoppndvlem14 36508 taupilem1 37304 poimirlem29 37636 heicant 37642 itggt0cn 37677 ftc1cnnc 37679 bfplem1 37809 rrncmslem 37819 aks4d1p1 42058 aks6d1c2 42112 irrapxlem4 42813 irrapxlem5 42814 imo72b2lem1 44159 dvdivbd 45879 ioodvbdlimc1lem2 45888 ioodvbdlimc2lem 45890 stoweidlem1 45957 stoweidlem7 45963 stoweidlem11 45967 stoweidlem25 45981 stoweidlem26 45982 stoweidlem34 45990 stoweidlem49 46005 stoweidlem52 46008 stoweidlem60 46016 wallispi 46026 stirlinglem6 46035 stirlinglem11 46040 fourierdlem30 46093 qndenserrnbl 46251 ovnsubaddlem1 46526 hoiqssbllem2 46579 pimrecltpos 46664 smfmullem1 46747 smfmullem2 46748 smfmullem3 46749 |
Copyright terms: Public domain | W3C validator |