Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpgt0d | Structured version Visualization version GIF version |
Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpgt0 12671 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 0cc0 10802 < clt 10940 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-rp 12660 |
This theorem is referenced by: rpregt0d 12707 ltmulgt11d 12736 ltmulgt12d 12737 gt0divd 12738 ge0divd 12739 lediv12ad 12760 prodge0rd 12766 expgt0 13744 nnesq 13870 bccl2 13965 sqrlem7 14888 sqrtgt0d 15052 iseralt 15324 fsumlt 15440 geomulcvg 15516 eirrlem 15841 sqrt2irrlem 15885 prmind2 16318 4sqlem11 16584 4sqlem12 16585 ssblex 23489 nrginvrcn 23762 mulc1cncf 23974 nmoleub2lem2 24185 itg2mulclem 24816 itggt0 24913 dvgt0 25073 ftc1lem5 25109 aaliou3lem2 25408 abelthlem8 25503 tanord 25599 tanregt0 25600 logccv 25723 cxpcn3lem 25805 jensenlem2 26042 dmlogdmgm 26078 basellem1 26135 sgmnncl 26201 chpdifbndlem2 26607 pntibndlem1 26642 pntibnd 26646 pntlemc 26648 abvcxp 26668 ostth2lem1 26671 ostth2lem3 26688 ostth2 26690 xrge0iifhom 31789 omssubadd 32167 sgnmulrp2 32410 signsply0 32430 sinccvglem 33530 unblimceq0lem 34613 unbdqndv2lem2 34617 knoppndvlem14 34632 taupilem1 35419 poimirlem29 35733 heicant 35739 itggt0cn 35774 ftc1cnnc 35776 bfplem1 35907 rrncmslem 35917 aks4d1p1 40012 cxpgt0d 40265 irrapxlem4 40563 irrapxlem5 40564 imo72b2lem1 41669 dvdivbd 43354 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 stoweidlem1 43432 stoweidlem7 43438 stoweidlem11 43442 stoweidlem25 43456 stoweidlem26 43457 stoweidlem34 43465 stoweidlem49 43480 stoweidlem52 43483 stoweidlem60 43491 wallispi 43501 stirlinglem6 43510 stirlinglem11 43515 fourierdlem30 43568 qndenserrnbl 43726 ovnsubaddlem1 43998 hoiqssbllem2 44051 pimrecltpos 44133 smfmullem1 44212 smfmullem2 44213 smfmullem3 44214 |
Copyright terms: Public domain | W3C validator |