![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrvdmss | Structured version Visualization version GIF version |
Description: The domain of a random variable. This is useful to shorten proofs. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
isrrvv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
rrvvf.1 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
Ref | Expression |
---|---|
rrvdmss | ⊢ (𝜑 → ∪ dom 𝑃 ⊆ dom 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrrvv.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | rrvvf.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | 1, 2 | rrvdm 34426 | . 2 ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) |
4 | eqimss2 4042 | . 2 ⊢ (dom 𝑋 = ∪ dom 𝑃 → ∪ dom 𝑃 ⊆ dom 𝑋) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → ∪ dom 𝑃 ⊆ dom 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3950 ∪ cuni 4905 dom cdm 5683 ‘cfv 6559 Probcprb 34387 rRndVarcrrv 34420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-pre-lttri 11225 ax-pre-lttrn 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-int 4945 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-po 5590 df-so 5591 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-er 8741 df-map 8864 df-en 8982 df-dom 8983 df-sdom 8984 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-ioo 13387 df-topgen 17484 df-top 22890 df-bases 22943 df-esum 34007 df-siga 34088 df-sigagen 34118 df-brsiga 34161 df-meas 34175 df-mbfm 34229 df-prob 34388 df-rrv 34421 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |