Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvfinvima Structured version   Visualization version   GIF version

Theorem rrvfinvima 33938
Description: For a real-value random variable 𝑋, any open interval in is the image of a measurable set. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypotheses
Ref Expression
isrrvv.1 (𝜑𝑃 ∈ Prob)
rrvvf.1 (𝜑𝑋 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
rrvfinvima (𝜑 → ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)
Distinct variable groups:   𝑦,𝑃   𝑦,𝑋
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem rrvfinvima
StepHypRef Expression
1 rrvvf.1 . . 3 (𝜑𝑋 ∈ (rRndVar‘𝑃))
2 isrrvv.1 . . . 4 (𝜑𝑃 ∈ Prob)
32isrrvv 33931 . . 3 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
41, 3mpbid 231 . 2 (𝜑 → (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃))
54simprd 495 1 (𝜑 → ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  wral 3053   cuni 4899  ccnv 5665  dom cdm 5666  cima 5669  wf 6529  cfv 6533  cr 11105  𝔅cbrsiga 33668  Probcprb 33895  rRndVarcrrv 33928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-ioo 13325  df-topgen 17388  df-top 22718  df-bases 22771  df-esum 33515  df-siga 33596  df-sigagen 33626  df-brsiga 33669  df-meas 33683  df-mbfm 33737  df-prob 33896  df-rrv 33929
This theorem is referenced by:  orvcelel  33957  dstrvprob  33959
  Copyright terms: Public domain W3C validator