Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvfinvima Structured version   Visualization version   GIF version

Theorem rrvfinvima 34126
Description: For a real-value random variable 𝑋, any open interval in ℝ is the image of a measurable set. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypotheses
Ref Expression
isrrvv.1 (πœ‘ β†’ 𝑃 ∈ Prob)
rrvvf.1 (πœ‘ β†’ 𝑋 ∈ (rRndVarβ€˜π‘ƒ))
Assertion
Ref Expression
rrvfinvima (πœ‘ β†’ βˆ€π‘¦ ∈ 𝔅ℝ (◑𝑋 β€œ 𝑦) ∈ dom 𝑃)
Distinct variable groups:   𝑦,𝑃   𝑦,𝑋
Allowed substitution hint:   πœ‘(𝑦)

Proof of Theorem rrvfinvima
StepHypRef Expression
1 rrvvf.1 . . 3 (πœ‘ β†’ 𝑋 ∈ (rRndVarβ€˜π‘ƒ))
2 isrrvv.1 . . . 4 (πœ‘ β†’ 𝑃 ∈ Prob)
32isrrvv 34119 . . 3 (πœ‘ β†’ (𝑋 ∈ (rRndVarβ€˜π‘ƒ) ↔ (𝑋:βˆͺ dom π‘ƒβŸΆβ„ ∧ βˆ€π‘¦ ∈ 𝔅ℝ (◑𝑋 β€œ 𝑦) ∈ dom 𝑃)))
41, 3mpbid 231 . 2 (πœ‘ β†’ (𝑋:βˆͺ dom π‘ƒβŸΆβ„ ∧ βˆ€π‘¦ ∈ 𝔅ℝ (◑𝑋 β€œ 𝑦) ∈ dom 𝑃))
54simprd 494 1 (πœ‘ β†’ βˆ€π‘¦ ∈ 𝔅ℝ (◑𝑋 β€œ 𝑦) ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∈ wcel 2098  βˆ€wral 3051  βˆͺ cuni 4903  β—‘ccnv 5671  dom cdm 5672   β€œ cima 5675  βŸΆwf 6538  β€˜cfv 6542  β„cr 11135  π”…ℝcbrsiga 33856  Probcprb 34083  rRndVarcrrv 34116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-pre-lttri 11210  ax-pre-lttrn 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7989  df-2nd 7990  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-ioo 13358  df-topgen 17422  df-top 22812  df-bases 22865  df-esum 33703  df-siga 33784  df-sigagen 33814  df-brsiga 33857  df-meas 33871  df-mbfm 33925  df-prob 34084  df-rrv 34117
This theorem is referenced by:  orvcelel  34145  dstrvprob  34147
  Copyright terms: Public domain W3C validator