Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvf2 Structured version   Visualization version   GIF version

Theorem rrvf2 31019
Description: A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypotheses
Ref Expression
isrrvv.1 (𝜑𝑃 ∈ Prob)
rrvvf.1 (𝜑𝑋 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
rrvf2 (𝜑𝑋:dom 𝑋⟶ℝ)

Proof of Theorem rrvf2
StepHypRef Expression
1 isrrvv.1 . . 3 (𝜑𝑃 ∈ Prob)
2 rrvvf.1 . . 3 (𝜑𝑋 ∈ (rRndVar‘𝑃))
31, 2rrvvf 31015 . 2 (𝜑𝑋: dom 𝑃⟶ℝ)
41, 2rrvdm 31017 . . 3 (𝜑 → dom 𝑋 = dom 𝑃)
54feq2d 6240 . 2 (𝜑 → (𝑋:dom 𝑋⟶ℝ ↔ 𝑋: dom 𝑃⟶ℝ))
63, 5mpbird 249 1 (𝜑𝑋:dom 𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157   cuni 4626  dom cdm 5310  wf 6095  cfv 6099  cr 10221  Probcprb 30978  rRndVarcrrv 31011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-pre-lttri 10296  ax-pre-lttrn 10297
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-po 5231  df-so 5232  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-1st 7399  df-2nd 7400  df-er 7980  df-map 8095  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-ioo 12424  df-topgen 16416  df-top 21024  df-bases 21076  df-esum 30598  df-siga 30679  df-sigagen 30710  df-brsiga 30753  df-meas 30767  df-mbfm 30821  df-prob 30979  df-rrv 31012
This theorem is referenced by:  orvclteinc  31046
  Copyright terms: Public domain W3C validator