Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvf2 Structured version   Visualization version   GIF version

Theorem rrvf2 34430
Description: A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypotheses
Ref Expression
isrrvv.1 (𝜑𝑃 ∈ Prob)
rrvvf.1 (𝜑𝑋 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
rrvf2 (𝜑𝑋:dom 𝑋⟶ℝ)

Proof of Theorem rrvf2
StepHypRef Expression
1 isrrvv.1 . . 3 (𝜑𝑃 ∈ Prob)
2 rrvvf.1 . . 3 (𝜑𝑋 ∈ (rRndVar‘𝑃))
31, 2rrvvf 34426 . 2 (𝜑𝑋: dom 𝑃⟶ℝ)
41, 2rrvdm 34428 . . 3 (𝜑 → dom 𝑋 = dom 𝑃)
54feq2d 6723 . 2 (𝜑 → (𝑋:dom 𝑋⟶ℝ ↔ 𝑋: dom 𝑃⟶ℝ))
63, 5mpbird 257 1 (𝜑𝑋:dom 𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   cuni 4912  dom cdm 5689  wf 6559  cfv 6563  cr 11152  Probcprb 34389  rRndVarcrrv 34422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ioo 13388  df-topgen 17490  df-top 22916  df-bases 22969  df-esum 34009  df-siga 34090  df-sigagen 34120  df-brsiga 34163  df-meas 34177  df-mbfm 34231  df-prob 34390  df-rrv 34423
This theorem is referenced by:  orvclteinc  34457
  Copyright terms: Public domain W3C validator