![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrvf2 | Structured version Visualization version GIF version |
Description: A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
isrrvv.1 | β’ (π β π β Prob) |
rrvvf.1 | β’ (π β π β (rRndVarβπ)) |
Ref | Expression |
---|---|
rrvf2 | β’ (π β π:dom πβΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrrvv.1 | . . 3 β’ (π β π β Prob) | |
2 | rrvvf.1 | . . 3 β’ (π β π β (rRndVarβπ)) | |
3 | 1, 2 | rrvvf 33907 | . 2 β’ (π β π:βͺ dom πβΆβ) |
4 | 1, 2 | rrvdm 33909 | . . 3 β’ (π β dom π = βͺ dom π) |
5 | 4 | feq2d 6703 | . 2 β’ (π β (π:dom πβΆβ β π:βͺ dom πβΆβ)) |
6 | 3, 5 | mpbird 257 | 1 β’ (π β π:dom πβΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2105 βͺ cuni 4908 dom cdm 5676 βΆwf 6539 βcfv 6543 βcr 11115 Probcprb 33870 rRndVarcrrv 33903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-pre-lttri 11190 ax-pre-lttrn 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-ioo 13335 df-topgen 17396 df-top 22716 df-bases 22769 df-esum 33490 df-siga 33571 df-sigagen 33601 df-brsiga 33644 df-meas 33658 df-mbfm 33712 df-prob 33871 df-rrv 33904 |
This theorem is referenced by: orvclteinc 33938 |
Copyright terms: Public domain | W3C validator |