![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ehl2eudis0lt | Structured version Visualization version GIF version |
Description: An upper bound of the Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 9-May-2023.) |
Ref | Expression |
---|---|
ehl2eudisval0.e | β’ πΈ = (πΌhilβ2) |
ehl2eudisval0.x | β’ π = (β βm {1, 2}) |
ehl2eudisval0.d | β’ π· = (distβπΈ) |
ehl2eudisval0.0 | β’ 0 = ({1, 2} Γ {0}) |
Ref | Expression |
---|---|
ehl2eudis0lt | β’ ((πΉ β π β§ π β β+) β ((πΉπ· 0 ) < π β (((πΉβ1)β2) + ((πΉβ2)β2)) < (π β2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehl2eudisval0.e | . . . . 5 β’ πΈ = (πΌhilβ2) | |
2 | ehl2eudisval0.x | . . . . 5 β’ π = (β βm {1, 2}) | |
3 | ehl2eudisval0.d | . . . . 5 β’ π· = (distβπΈ) | |
4 | ehl2eudisval0.0 | . . . . 5 β’ 0 = ({1, 2} Γ {0}) | |
5 | 1, 2, 3, 4 | ehl2eudisval0 47401 | . . . 4 β’ (πΉ β π β (πΉπ· 0 ) = (ββ(((πΉβ1)β2) + ((πΉβ2)β2)))) |
6 | 5 | adantr 481 | . . 3 β’ ((πΉ β π β§ π β β+) β (πΉπ· 0 ) = (ββ(((πΉβ1)β2) + ((πΉβ2)β2)))) |
7 | 6 | breq1d 5158 | . 2 β’ ((πΉ β π β§ π β β+) β ((πΉπ· 0 ) < π β (ββ(((πΉβ1)β2) + ((πΉβ2)β2))) < π )) |
8 | eqid 2732 | . . . . . . 7 β’ {1, 2} = {1, 2} | |
9 | 8, 2 | rrx2pxel 47387 | . . . . . 6 β’ (πΉ β π β (πΉβ1) β β) |
10 | 8, 2 | rrx2pyel 47388 | . . . . . 6 β’ (πΉ β π β (πΉβ2) β β) |
11 | eqid 2732 | . . . . . . 7 β’ (((πΉβ1)β2) + ((πΉβ2)β2)) = (((πΉβ1)β2) + ((πΉβ2)β2)) | |
12 | 11 | resum2sqcl 47382 | . . . . . 6 β’ (((πΉβ1) β β β§ (πΉβ2) β β) β (((πΉβ1)β2) + ((πΉβ2)β2)) β β) |
13 | 9, 10, 12 | syl2anc 584 | . . . . 5 β’ (πΉ β π β (((πΉβ1)β2) + ((πΉβ2)β2)) β β) |
14 | resqcl 14088 | . . . . . . . 8 β’ ((πΉβ1) β β β ((πΉβ1)β2) β β) | |
15 | resqcl 14088 | . . . . . . . 8 β’ ((πΉβ2) β β β ((πΉβ2)β2) β β) | |
16 | 14, 15 | anim12i 613 | . . . . . . 7 β’ (((πΉβ1) β β β§ (πΉβ2) β β) β (((πΉβ1)β2) β β β§ ((πΉβ2)β2) β β)) |
17 | sqge0 14100 | . . . . . . . 8 β’ ((πΉβ1) β β β 0 β€ ((πΉβ1)β2)) | |
18 | sqge0 14100 | . . . . . . . 8 β’ ((πΉβ2) β β β 0 β€ ((πΉβ2)β2)) | |
19 | 17, 18 | anim12i 613 | . . . . . . 7 β’ (((πΉβ1) β β β§ (πΉβ2) β β) β (0 β€ ((πΉβ1)β2) β§ 0 β€ ((πΉβ2)β2))) |
20 | addge0 11702 | . . . . . . 7 β’ (((((πΉβ1)β2) β β β§ ((πΉβ2)β2) β β) β§ (0 β€ ((πΉβ1)β2) β§ 0 β€ ((πΉβ2)β2))) β 0 β€ (((πΉβ1)β2) + ((πΉβ2)β2))) | |
21 | 16, 19, 20 | syl2anc 584 | . . . . . 6 β’ (((πΉβ1) β β β§ (πΉβ2) β β) β 0 β€ (((πΉβ1)β2) + ((πΉβ2)β2))) |
22 | 9, 10, 21 | syl2anc 584 | . . . . 5 β’ (πΉ β π β 0 β€ (((πΉβ1)β2) + ((πΉβ2)β2))) |
23 | 13, 22 | resqrtcld 15363 | . . . 4 β’ (πΉ β π β (ββ(((πΉβ1)β2) + ((πΉβ2)β2))) β β) |
24 | 13, 22 | sqrtge0d 15366 | . . . 4 β’ (πΉ β π β 0 β€ (ββ(((πΉβ1)β2) + ((πΉβ2)β2)))) |
25 | 23, 24 | jca 512 | . . 3 β’ (πΉ β π β ((ββ(((πΉβ1)β2) + ((πΉβ2)β2))) β β β§ 0 β€ (ββ(((πΉβ1)β2) + ((πΉβ2)β2))))) |
26 | rprege0 12988 | . . 3 β’ (π β β+ β (π β β β§ 0 β€ π )) | |
27 | lt2sq 14097 | . . 3 β’ ((((ββ(((πΉβ1)β2) + ((πΉβ2)β2))) β β β§ 0 β€ (ββ(((πΉβ1)β2) + ((πΉβ2)β2)))) β§ (π β β β§ 0 β€ π )) β ((ββ(((πΉβ1)β2) + ((πΉβ2)β2))) < π β ((ββ(((πΉβ1)β2) + ((πΉβ2)β2)))β2) < (π β2))) | |
28 | 25, 26, 27 | syl2an 596 | . 2 β’ ((πΉ β π β§ π β β+) β ((ββ(((πΉβ1)β2) + ((πΉβ2)β2))) < π β ((ββ(((πΉβ1)β2) + ((πΉβ2)β2)))β2) < (π β2))) |
29 | 13, 22 | jca 512 | . . . . 5 β’ (πΉ β π β ((((πΉβ1)β2) + ((πΉβ2)β2)) β β β§ 0 β€ (((πΉβ1)β2) + ((πΉβ2)β2)))) |
30 | 29 | adantr 481 | . . . 4 β’ ((πΉ β π β§ π β β+) β ((((πΉβ1)β2) + ((πΉβ2)β2)) β β β§ 0 β€ (((πΉβ1)β2) + ((πΉβ2)β2)))) |
31 | resqrtth 15201 | . . . 4 β’ (((((πΉβ1)β2) + ((πΉβ2)β2)) β β β§ 0 β€ (((πΉβ1)β2) + ((πΉβ2)β2))) β ((ββ(((πΉβ1)β2) + ((πΉβ2)β2)))β2) = (((πΉβ1)β2) + ((πΉβ2)β2))) | |
32 | 30, 31 | syl 17 | . . 3 β’ ((πΉ β π β§ π β β+) β ((ββ(((πΉβ1)β2) + ((πΉβ2)β2)))β2) = (((πΉβ1)β2) + ((πΉβ2)β2))) |
33 | 32 | breq1d 5158 | . 2 β’ ((πΉ β π β§ π β β+) β (((ββ(((πΉβ1)β2) + ((πΉβ2)β2)))β2) < (π β2) β (((πΉβ1)β2) + ((πΉβ2)β2)) < (π β2))) |
34 | 7, 28, 33 | 3bitrd 304 | 1 β’ ((πΉ β π β§ π β β+) β ((πΉπ· 0 ) < π β (((πΉβ1)β2) + ((πΉβ2)β2)) < (π β2))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {csn 4628 {cpr 4630 class class class wbr 5148 Γ cxp 5674 βcfv 6543 (class class class)co 7408 βm cmap 8819 βcr 11108 0cc0 11109 1c1 11110 + caddc 11112 < clt 11247 β€ cle 11248 2c2 12266 β+crp 12973 βcexp 14026 βcsqrt 15179 distcds 17205 πΌhilcehl 24900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-sum 15632 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17386 df-gsum 17387 df-prds 17392 df-pws 17394 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-grp 18821 df-minusg 18822 df-sbg 18823 df-subg 19002 df-ghm 19089 df-cntz 19180 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-dvr 20214 df-rnghom 20250 df-subrg 20316 df-drng 20358 df-field 20359 df-staf 20452 df-srng 20453 df-lmod 20472 df-lss 20542 df-sra 20784 df-rgmod 20785 df-cnfld 20944 df-refld 21157 df-dsmm 21286 df-frlm 21301 df-nm 24090 df-tng 24092 df-tcph 24685 df-rrx 24901 df-ehl 24902 |
This theorem is referenced by: inlinecirc02p 47463 |
Copyright terms: Public domain | W3C validator |