| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ehl2eudis0lt | Structured version Visualization version GIF version | ||
| Description: An upper bound of the Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 9-May-2023.) |
| Ref | Expression |
|---|---|
| ehl2eudisval0.e | ⊢ 𝐸 = (𝔼hil‘2) |
| ehl2eudisval0.x | ⊢ 𝑋 = (ℝ ↑m {1, 2}) |
| ehl2eudisval0.d | ⊢ 𝐷 = (dist‘𝐸) |
| ehl2eudisval0.0 | ⊢ 0 = ({1, 2} × {0}) |
| Ref | Expression |
|---|---|
| ehl2eudis0lt | ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ehl2eudisval0.e | . . . . 5 ⊢ 𝐸 = (𝔼hil‘2) | |
| 2 | ehl2eudisval0.x | . . . . 5 ⊢ 𝑋 = (ℝ ↑m {1, 2}) | |
| 3 | ehl2eudisval0.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐸) | |
| 4 | ehl2eudisval0.0 | . . . . 5 ⊢ 0 = ({1, 2} × {0}) | |
| 5 | 1, 2, 3, 4 | ehl2eudisval0 48714 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
| 7 | 6 | breq1d 5117 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅)) |
| 8 | eqid 2729 | . . . . . . 7 ⊢ {1, 2} = {1, 2} | |
| 9 | 8, 2 | rrx2pxel 48700 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘1) ∈ ℝ) |
| 10 | 8, 2 | rrx2pyel 48701 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘2) ∈ ℝ) |
| 11 | eqid 2729 | . . . . . . 7 ⊢ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) | |
| 12 | 11 | resum2sqcl 48695 | . . . . . 6 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ) |
| 13 | 9, 10, 12 | syl2anc 584 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ) |
| 14 | resqcl 14089 | . . . . . . . 8 ⊢ ((𝐹‘1) ∈ ℝ → ((𝐹‘1)↑2) ∈ ℝ) | |
| 15 | resqcl 14089 | . . . . . . . 8 ⊢ ((𝐹‘2) ∈ ℝ → ((𝐹‘2)↑2) ∈ ℝ) | |
| 16 | 14, 15 | anim12i 613 | . . . . . . 7 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (((𝐹‘1)↑2) ∈ ℝ ∧ ((𝐹‘2)↑2) ∈ ℝ)) |
| 17 | sqge0 14101 | . . . . . . . 8 ⊢ ((𝐹‘1) ∈ ℝ → 0 ≤ ((𝐹‘1)↑2)) | |
| 18 | sqge0 14101 | . . . . . . . 8 ⊢ ((𝐹‘2) ∈ ℝ → 0 ≤ ((𝐹‘2)↑2)) | |
| 19 | 17, 18 | anim12i 613 | . . . . . . 7 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (0 ≤ ((𝐹‘1)↑2) ∧ 0 ≤ ((𝐹‘2)↑2))) |
| 20 | addge0 11667 | . . . . . . 7 ⊢ (((((𝐹‘1)↑2) ∈ ℝ ∧ ((𝐹‘2)↑2) ∈ ℝ) ∧ (0 ≤ ((𝐹‘1)↑2) ∧ 0 ≤ ((𝐹‘2)↑2))) → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) | |
| 21 | 16, 19, 20 | syl2anc 584 | . . . . . 6 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
| 22 | 9, 10, 21 | syl2anc 584 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
| 23 | 13, 22 | resqrtcld 15384 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ) |
| 24 | 13, 22 | sqrtge0d 15387 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
| 25 | 23, 24 | jca 511 | . . 3 ⊢ (𝐹 ∈ 𝑋 → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ ∧ 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))) |
| 26 | rprege0 12967 | . . 3 ⊢ (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) | |
| 27 | lt2sq 14098 | . . 3 ⊢ ((((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ ∧ 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅 ↔ ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2))) | |
| 28 | 25, 26, 27 | syl2an 596 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅 ↔ ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2))) |
| 29 | 13, 22 | jca 511 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → ((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
| 31 | resqrtth 15221 | . . . 4 ⊢ (((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) | |
| 32 | 30, 31 | syl 17 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
| 33 | 32 | breq1d 5117 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2) ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2))) |
| 34 | 7, 28, 33 | 3bitrd 305 | 1 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 {cpr 4591 class class class wbr 5107 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 ≤ cle 11209 2c2 12241 ℝ+crp 12951 ↑cexp 14026 √csqrt 15199 distcds 17229 𝔼hilcehl 25284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-field 20641 df-staf 20748 df-srng 20749 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-cnfld 21265 df-refld 21514 df-dsmm 21641 df-frlm 21656 df-nm 24470 df-tng 24472 df-tcph 25069 df-rrx 25285 df-ehl 25286 |
| This theorem is referenced by: inlinecirc02p 48776 |
| Copyright terms: Public domain | W3C validator |