Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ehl2eudis0lt Structured version   Visualization version   GIF version

Theorem ehl2eudis0lt 45699
Description: An upper bound of the Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 9-May-2023.)
Hypotheses
Ref Expression
ehl2eudisval0.e 𝐸 = (𝔼hil‘2)
ehl2eudisval0.x 𝑋 = (ℝ ↑m {1, 2})
ehl2eudisval0.d 𝐷 = (dist‘𝐸)
ehl2eudisval0.0 0 = ({1, 2} × {0})
Assertion
Ref Expression
ehl2eudis0lt ((𝐹𝑋𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2)))

Proof of Theorem ehl2eudis0lt
StepHypRef Expression
1 ehl2eudisval0.e . . . . 5 𝐸 = (𝔼hil‘2)
2 ehl2eudisval0.x . . . . 5 𝑋 = (ℝ ↑m {1, 2})
3 ehl2eudisval0.d . . . . 5 𝐷 = (dist‘𝐸)
4 ehl2eudisval0.0 . . . . 5 0 = ({1, 2} × {0})
51, 2, 3, 4ehl2eudisval0 45698 . . . 4 (𝐹𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
65adantr 484 . . 3 ((𝐹𝑋𝑅 ∈ ℝ+) → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
76breq1d 5053 . 2 ((𝐹𝑋𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅))
8 eqid 2734 . . . . . . 7 {1, 2} = {1, 2}
98, 2rrx2pxel 45684 . . . . . 6 (𝐹𝑋 → (𝐹‘1) ∈ ℝ)
108, 2rrx2pyel 45685 . . . . . 6 (𝐹𝑋 → (𝐹‘2) ∈ ℝ)
11 eqid 2734 . . . . . . 7 (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2))
1211resum2sqcl 45679 . . . . . 6 (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ)
139, 10, 12syl2anc 587 . . . . 5 (𝐹𝑋 → (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ)
14 resqcl 13679 . . . . . . . 8 ((𝐹‘1) ∈ ℝ → ((𝐹‘1)↑2) ∈ ℝ)
15 resqcl 13679 . . . . . . . 8 ((𝐹‘2) ∈ ℝ → ((𝐹‘2)↑2) ∈ ℝ)
1614, 15anim12i 616 . . . . . . 7 (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (((𝐹‘1)↑2) ∈ ℝ ∧ ((𝐹‘2)↑2) ∈ ℝ))
17 sqge0 13690 . . . . . . . 8 ((𝐹‘1) ∈ ℝ → 0 ≤ ((𝐹‘1)↑2))
18 sqge0 13690 . . . . . . . 8 ((𝐹‘2) ∈ ℝ → 0 ≤ ((𝐹‘2)↑2))
1917, 18anim12i 616 . . . . . . 7 (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (0 ≤ ((𝐹‘1)↑2) ∧ 0 ≤ ((𝐹‘2)↑2)))
20 addge0 11304 . . . . . . 7 (((((𝐹‘1)↑2) ∈ ℝ ∧ ((𝐹‘2)↑2) ∈ ℝ) ∧ (0 ≤ ((𝐹‘1)↑2) ∧ 0 ≤ ((𝐹‘2)↑2))) → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))
2116, 19, 20syl2anc 587 . . . . . 6 (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))
229, 10, 21syl2anc 587 . . . . 5 (𝐹𝑋 → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))
2313, 22resqrtcld 14964 . . . 4 (𝐹𝑋 → (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ)
2413, 22sqrtge0d 14967 . . . 4 (𝐹𝑋 → 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
2523, 24jca 515 . . 3 (𝐹𝑋 → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ ∧ 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))))
26 rprege0 12584 . . 3 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
27 lt2sq 13687 . . 3 ((((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ ∧ 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅 ↔ ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2)))
2825, 26, 27syl2an 599 . 2 ((𝐹𝑋𝑅 ∈ ℝ+) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅 ↔ ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2)))
2913, 22jca 515 . . . . 5 (𝐹𝑋 → ((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
3029adantr 484 . . . 4 ((𝐹𝑋𝑅 ∈ ℝ+) → ((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
31 resqrtth 14802 . . . 4 (((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))
3230, 31syl 17 . . 3 ((𝐹𝑋𝑅 ∈ ℝ+) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))
3332breq1d 5053 . 2 ((𝐹𝑋𝑅 ∈ ℝ+) → (((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2) ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2)))
347, 28, 333bitrd 308 1 ((𝐹𝑋𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  {csn 4531  {cpr 4533   class class class wbr 5043   × cxp 5538  cfv 6369  (class class class)co 7202  m cmap 8497  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   < clt 10850  cle 10851  2c2 11868  +crp 12569  cexp 13618  csqrt 14779  distcds 16776  𝔼hilcehl 24253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-addf 10791  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-tpos 7957  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-sup 9047  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-sum 15233  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-hom 16791  df-cco 16792  df-0g 16918  df-gsum 16919  df-prds 16924  df-pws 16926  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-mhm 18190  df-grp 18340  df-minusg 18341  df-sbg 18342  df-subg 18512  df-ghm 18592  df-cntz 18683  df-cmn 19144  df-abl 19145  df-mgp 19477  df-ur 19489  df-ring 19536  df-cring 19537  df-oppr 19613  df-dvdsr 19631  df-unit 19632  df-invr 19662  df-dvr 19673  df-rnghom 19707  df-drng 19741  df-field 19742  df-subrg 19770  df-staf 19853  df-srng 19854  df-lmod 19873  df-lss 19941  df-sra 20181  df-rgmod 20182  df-cnfld 20336  df-refld 20539  df-dsmm 20666  df-frlm 20681  df-nm 23452  df-tng 23454  df-tcph 24038  df-rrx 24254  df-ehl 24255
This theorem is referenced by:  inlinecirc02p  45760
  Copyright terms: Public domain W3C validator