Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ehl2eudis0lt | Structured version Visualization version GIF version |
Description: An upper bound of the Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 9-May-2023.) |
Ref | Expression |
---|---|
ehl2eudisval0.e | ⊢ 𝐸 = (𝔼hil‘2) |
ehl2eudisval0.x | ⊢ 𝑋 = (ℝ ↑m {1, 2}) |
ehl2eudisval0.d | ⊢ 𝐷 = (dist‘𝐸) |
ehl2eudisval0.0 | ⊢ 0 = ({1, 2} × {0}) |
Ref | Expression |
---|---|
ehl2eudis0lt | ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehl2eudisval0.e | . . . . 5 ⊢ 𝐸 = (𝔼hil‘2) | |
2 | ehl2eudisval0.x | . . . . 5 ⊢ 𝑋 = (ℝ ↑m {1, 2}) | |
3 | ehl2eudisval0.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐸) | |
4 | ehl2eudisval0.0 | . . . . 5 ⊢ 0 = ({1, 2} × {0}) | |
5 | 1, 2, 3, 4 | ehl2eudisval0 45959 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
7 | 6 | breq1d 5080 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅)) |
8 | eqid 2738 | . . . . . . 7 ⊢ {1, 2} = {1, 2} | |
9 | 8, 2 | rrx2pxel 45945 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘1) ∈ ℝ) |
10 | 8, 2 | rrx2pyel 45946 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘2) ∈ ℝ) |
11 | eqid 2738 | . . . . . . 7 ⊢ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) | |
12 | 11 | resum2sqcl 45940 | . . . . . 6 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ) |
13 | 9, 10, 12 | syl2anc 583 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ) |
14 | resqcl 13772 | . . . . . . . 8 ⊢ ((𝐹‘1) ∈ ℝ → ((𝐹‘1)↑2) ∈ ℝ) | |
15 | resqcl 13772 | . . . . . . . 8 ⊢ ((𝐹‘2) ∈ ℝ → ((𝐹‘2)↑2) ∈ ℝ) | |
16 | 14, 15 | anim12i 612 | . . . . . . 7 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (((𝐹‘1)↑2) ∈ ℝ ∧ ((𝐹‘2)↑2) ∈ ℝ)) |
17 | sqge0 13783 | . . . . . . . 8 ⊢ ((𝐹‘1) ∈ ℝ → 0 ≤ ((𝐹‘1)↑2)) | |
18 | sqge0 13783 | . . . . . . . 8 ⊢ ((𝐹‘2) ∈ ℝ → 0 ≤ ((𝐹‘2)↑2)) | |
19 | 17, 18 | anim12i 612 | . . . . . . 7 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (0 ≤ ((𝐹‘1)↑2) ∧ 0 ≤ ((𝐹‘2)↑2))) |
20 | addge0 11394 | . . . . . . 7 ⊢ (((((𝐹‘1)↑2) ∈ ℝ ∧ ((𝐹‘2)↑2) ∈ ℝ) ∧ (0 ≤ ((𝐹‘1)↑2) ∧ 0 ≤ ((𝐹‘2)↑2))) → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) | |
21 | 16, 19, 20 | syl2anc 583 | . . . . . 6 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
22 | 9, 10, 21 | syl2anc 583 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
23 | 13, 22 | resqrtcld 15057 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ) |
24 | 13, 22 | sqrtge0d 15060 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
25 | 23, 24 | jca 511 | . . 3 ⊢ (𝐹 ∈ 𝑋 → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ ∧ 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))) |
26 | rprege0 12674 | . . 3 ⊢ (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) | |
27 | lt2sq 13780 | . . 3 ⊢ ((((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ ∧ 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅 ↔ ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2))) | |
28 | 25, 26, 27 | syl2an 595 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅 ↔ ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2))) |
29 | 13, 22 | jca 511 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → ((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
30 | 29 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
31 | resqrtth 14895 | . . . 4 ⊢ (((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) | |
32 | 30, 31 | syl 17 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
33 | 32 | breq1d 5080 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2) ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2))) |
34 | 7, 28, 33 | 3bitrd 304 | 1 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 {cpr 4560 class class class wbr 5070 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 ≤ cle 10941 2c2 11958 ℝ+crp 12659 ↑cexp 13710 √csqrt 14872 distcds 16897 𝔼hilcehl 24453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-field 19909 df-subrg 19937 df-staf 20020 df-srng 20021 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-cnfld 20511 df-refld 20722 df-dsmm 20849 df-frlm 20864 df-nm 23644 df-tng 23646 df-tcph 24238 df-rrx 24454 df-ehl 24455 |
This theorem is referenced by: inlinecirc02p 46021 |
Copyright terms: Public domain | W3C validator |