| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ehl2eudis0lt | Structured version Visualization version GIF version | ||
| Description: An upper bound of the Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 9-May-2023.) |
| Ref | Expression |
|---|---|
| ehl2eudisval0.e | ⊢ 𝐸 = (𝔼hil‘2) |
| ehl2eudisval0.x | ⊢ 𝑋 = (ℝ ↑m {1, 2}) |
| ehl2eudisval0.d | ⊢ 𝐷 = (dist‘𝐸) |
| ehl2eudisval0.0 | ⊢ 0 = ({1, 2} × {0}) |
| Ref | Expression |
|---|---|
| ehl2eudis0lt | ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ehl2eudisval0.e | . . . . 5 ⊢ 𝐸 = (𝔼hil‘2) | |
| 2 | ehl2eudisval0.x | . . . . 5 ⊢ 𝑋 = (ℝ ↑m {1, 2}) | |
| 3 | ehl2eudisval0.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐸) | |
| 4 | ehl2eudisval0.0 | . . . . 5 ⊢ 0 = ({1, 2} × {0}) | |
| 5 | 1, 2, 3, 4 | ehl2eudisval0 48707 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
| 7 | 6 | breq1d 5112 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅)) |
| 8 | eqid 2729 | . . . . . . 7 ⊢ {1, 2} = {1, 2} | |
| 9 | 8, 2 | rrx2pxel 48693 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘1) ∈ ℝ) |
| 10 | 8, 2 | rrx2pyel 48694 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘2) ∈ ℝ) |
| 11 | eqid 2729 | . . . . . . 7 ⊢ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) | |
| 12 | 11 | resum2sqcl 48688 | . . . . . 6 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ) |
| 13 | 9, 10, 12 | syl2anc 584 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ) |
| 14 | resqcl 14065 | . . . . . . . 8 ⊢ ((𝐹‘1) ∈ ℝ → ((𝐹‘1)↑2) ∈ ℝ) | |
| 15 | resqcl 14065 | . . . . . . . 8 ⊢ ((𝐹‘2) ∈ ℝ → ((𝐹‘2)↑2) ∈ ℝ) | |
| 16 | 14, 15 | anim12i 613 | . . . . . . 7 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (((𝐹‘1)↑2) ∈ ℝ ∧ ((𝐹‘2)↑2) ∈ ℝ)) |
| 17 | sqge0 14077 | . . . . . . . 8 ⊢ ((𝐹‘1) ∈ ℝ → 0 ≤ ((𝐹‘1)↑2)) | |
| 18 | sqge0 14077 | . . . . . . . 8 ⊢ ((𝐹‘2) ∈ ℝ → 0 ≤ ((𝐹‘2)↑2)) | |
| 19 | 17, 18 | anim12i 613 | . . . . . . 7 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (0 ≤ ((𝐹‘1)↑2) ∧ 0 ≤ ((𝐹‘2)↑2))) |
| 20 | addge0 11643 | . . . . . . 7 ⊢ (((((𝐹‘1)↑2) ∈ ℝ ∧ ((𝐹‘2)↑2) ∈ ℝ) ∧ (0 ≤ ((𝐹‘1)↑2) ∧ 0 ≤ ((𝐹‘2)↑2))) → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) | |
| 21 | 16, 19, 20 | syl2anc 584 | . . . . . 6 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
| 22 | 9, 10, 21 | syl2anc 584 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
| 23 | 13, 22 | resqrtcld 15360 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ) |
| 24 | 13, 22 | sqrtge0d 15363 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
| 25 | 23, 24 | jca 511 | . . 3 ⊢ (𝐹 ∈ 𝑋 → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ ∧ 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))) |
| 26 | rprege0 12943 | . . 3 ⊢ (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) | |
| 27 | lt2sq 14074 | . . 3 ⊢ ((((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ ∧ 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅 ↔ ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2))) | |
| 28 | 25, 26, 27 | syl2an 596 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅 ↔ ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2))) |
| 29 | 13, 22 | jca 511 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → ((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
| 31 | resqrtth 15197 | . . . 4 ⊢ (((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) | |
| 32 | 30, 31 | syl 17 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
| 33 | 32 | breq1d 5112 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2) ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2))) |
| 34 | 7, 28, 33 | 3bitrd 305 | 1 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4585 {cpr 4587 class class class wbr 5102 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 ≤ cle 11185 2c2 12217 ℝ+crp 12927 ↑cexp 14002 √csqrt 15175 distcds 17205 𝔼hilcehl 25317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-grp 18850 df-minusg 18851 df-sbg 18852 df-subg 19037 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-rhm 20392 df-subrng 20466 df-subrg 20490 df-drng 20651 df-field 20652 df-staf 20759 df-srng 20760 df-lmod 20800 df-lss 20870 df-sra 21112 df-rgmod 21113 df-cnfld 21297 df-refld 21547 df-dsmm 21674 df-frlm 21689 df-nm 24503 df-tng 24505 df-tcph 25102 df-rrx 25318 df-ehl 25319 |
| This theorem is referenced by: inlinecirc02p 48769 |
| Copyright terms: Public domain | W3C validator |