![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ehl2eudis0lt | Structured version Visualization version GIF version |
Description: An upper bound of the Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 9-May-2023.) |
Ref | Expression |
---|---|
ehl2eudisval0.e | ⊢ 𝐸 = (𝔼hil‘2) |
ehl2eudisval0.x | ⊢ 𝑋 = (ℝ ↑𝑚 {1, 2}) |
ehl2eudisval0.d | ⊢ 𝐷 = (dist‘𝐸) |
ehl2eudisval0.0 | ⊢ 0 = ({1, 2} × {0}) |
Ref | Expression |
---|---|
ehl2eudis0lt | ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehl2eudisval0.e | . . . . 5 ⊢ 𝐸 = (𝔼hil‘2) | |
2 | ehl2eudisval0.x | . . . . 5 ⊢ 𝑋 = (ℝ ↑𝑚 {1, 2}) | |
3 | ehl2eudisval0.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐸) | |
4 | ehl2eudisval0.0 | . . . . 5 ⊢ 0 = ({1, 2} × {0}) | |
5 | 1, 2, 3, 4 | ehl2eudisval0 44020 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
6 | 5 | adantr 473 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
7 | 6 | breq1d 4933 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅)) |
8 | eqid 2772 | . . . . . . 7 ⊢ {1, 2} = {1, 2} | |
9 | 8, 2 | rrx2pxel 44006 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘1) ∈ ℝ) |
10 | 8, 2 | rrx2pyel 44007 | . . . . . 6 ⊢ (𝐹 ∈ 𝑋 → (𝐹‘2) ∈ ℝ) |
11 | eqid 2772 | . . . . . . 7 ⊢ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) | |
12 | 11 | resum2sqcl 44001 | . . . . . 6 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ) |
13 | 9, 10, 12 | syl2anc 576 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ) |
14 | resqcl 13298 | . . . . . . . 8 ⊢ ((𝐹‘1) ∈ ℝ → ((𝐹‘1)↑2) ∈ ℝ) | |
15 | resqcl 13298 | . . . . . . . 8 ⊢ ((𝐹‘2) ∈ ℝ → ((𝐹‘2)↑2) ∈ ℝ) | |
16 | 14, 15 | anim12i 603 | . . . . . . 7 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (((𝐹‘1)↑2) ∈ ℝ ∧ ((𝐹‘2)↑2) ∈ ℝ)) |
17 | sqge0 13309 | . . . . . . . 8 ⊢ ((𝐹‘1) ∈ ℝ → 0 ≤ ((𝐹‘1)↑2)) | |
18 | sqge0 13309 | . . . . . . . 8 ⊢ ((𝐹‘2) ∈ ℝ → 0 ≤ ((𝐹‘2)↑2)) | |
19 | 17, 18 | anim12i 603 | . . . . . . 7 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (0 ≤ ((𝐹‘1)↑2) ∧ 0 ≤ ((𝐹‘2)↑2))) |
20 | addge0 10922 | . . . . . . 7 ⊢ (((((𝐹‘1)↑2) ∈ ℝ ∧ ((𝐹‘2)↑2) ∈ ℝ) ∧ (0 ≤ ((𝐹‘1)↑2) ∧ 0 ≤ ((𝐹‘2)↑2))) → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) | |
21 | 16, 19, 20 | syl2anc 576 | . . . . . 6 ⊢ (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
22 | 9, 10, 21 | syl2anc 576 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
23 | 13, 22 | resqrtcld 14628 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ) |
24 | 13, 22 | sqrtge0d 14631 | . . . 4 ⊢ (𝐹 ∈ 𝑋 → 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
25 | 23, 24 | jca 504 | . . 3 ⊢ (𝐹 ∈ 𝑋 → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ ∧ 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))) |
26 | rprege0 12214 | . . 3 ⊢ (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) | |
27 | lt2sq 13306 | . . 3 ⊢ ((((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ ∧ 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅 ↔ ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2))) | |
28 | 25, 26, 27 | syl2an 586 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅 ↔ ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2))) |
29 | 13, 22 | jca 504 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → ((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
30 | 29 | adantr 473 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) |
31 | resqrtth 14466 | . . . 4 ⊢ (((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) | |
32 | 30, 31 | syl 17 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) |
33 | 32 | breq1d 4933 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2) ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2))) |
34 | 7, 28, 33 | 3bitrd 297 | 1 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 {csn 4435 {cpr 4437 class class class wbr 4923 × cxp 5398 ‘cfv 6182 (class class class)co 6970 ↑𝑚 cmap 8198 ℝcr 10326 0cc0 10327 1c1 10328 + caddc 10330 < clt 10466 ≤ cle 10467 2c2 11488 ℝ+crp 12197 ↑cexp 13237 √csqrt 14443 distcds 16420 𝔼hilcehl 23680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8890 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 ax-addf 10406 ax-mulf 10407 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-se 5360 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-of 7221 df-om 7391 df-1st 7494 df-2nd 7495 df-supp 7627 df-tpos 7688 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-oadd 7901 df-er 8081 df-map 8200 df-ixp 8252 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-fsupp 8621 df-sup 8693 df-oi 8761 df-card 9154 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-4 11498 df-5 11499 df-6 11500 df-7 11501 df-8 11502 df-9 11503 df-n0 11701 df-z 11787 df-dec 11905 df-uz 12052 df-rp 12198 df-fz 12702 df-fzo 12843 df-seq 13178 df-exp 13238 df-hash 13499 df-cj 14309 df-re 14310 df-im 14311 df-sqrt 14445 df-abs 14446 df-clim 14696 df-sum 14894 df-struct 16331 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-mulr 16425 df-starv 16426 df-sca 16427 df-vsca 16428 df-ip 16429 df-tset 16430 df-ple 16431 df-ds 16433 df-unif 16434 df-hom 16435 df-cco 16436 df-0g 16561 df-gsum 16562 df-prds 16567 df-pws 16569 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-mhm 17793 df-grp 17884 df-minusg 17885 df-sbg 17886 df-subg 18050 df-ghm 18117 df-cntz 18208 df-cmn 18658 df-abl 18659 df-mgp 18953 df-ur 18965 df-ring 19012 df-cring 19013 df-oppr 19086 df-dvdsr 19104 df-unit 19105 df-invr 19135 df-dvr 19146 df-rnghom 19180 df-drng 19217 df-field 19218 df-subrg 19246 df-staf 19328 df-srng 19329 df-lmod 19348 df-lss 19416 df-sra 19656 df-rgmod 19657 df-cnfld 20238 df-refld 20441 df-dsmm 20568 df-frlm 20583 df-nm 22885 df-tng 22887 df-tcph 23466 df-rrx 23681 df-ehl 23682 |
This theorem is referenced by: inlinecirc02p 44082 |
Copyright terms: Public domain | W3C validator |