Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ehl2eudis0lt Structured version   Visualization version   GIF version

Theorem ehl2eudis0lt 45960
Description: An upper bound of the Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 9-May-2023.)
Hypotheses
Ref Expression
ehl2eudisval0.e 𝐸 = (𝔼hil‘2)
ehl2eudisval0.x 𝑋 = (ℝ ↑m {1, 2})
ehl2eudisval0.d 𝐷 = (dist‘𝐸)
ehl2eudisval0.0 0 = ({1, 2} × {0})
Assertion
Ref Expression
ehl2eudis0lt ((𝐹𝑋𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2)))

Proof of Theorem ehl2eudis0lt
StepHypRef Expression
1 ehl2eudisval0.e . . . . 5 𝐸 = (𝔼hil‘2)
2 ehl2eudisval0.x . . . . 5 𝑋 = (ℝ ↑m {1, 2})
3 ehl2eudisval0.d . . . . 5 𝐷 = (dist‘𝐸)
4 ehl2eudisval0.0 . . . . 5 0 = ({1, 2} × {0})
51, 2, 3, 4ehl2eudisval0 45959 . . . 4 (𝐹𝑋 → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
65adantr 480 . . 3 ((𝐹𝑋𝑅 ∈ ℝ+) → (𝐹𝐷 0 ) = (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
76breq1d 5080 . 2 ((𝐹𝑋𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅))
8 eqid 2738 . . . . . . 7 {1, 2} = {1, 2}
98, 2rrx2pxel 45945 . . . . . 6 (𝐹𝑋 → (𝐹‘1) ∈ ℝ)
108, 2rrx2pyel 45946 . . . . . 6 (𝐹𝑋 → (𝐹‘2) ∈ ℝ)
11 eqid 2738 . . . . . . 7 (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2))
1211resum2sqcl 45940 . . . . . 6 (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ)
139, 10, 12syl2anc 583 . . . . 5 (𝐹𝑋 → (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ)
14 resqcl 13772 . . . . . . . 8 ((𝐹‘1) ∈ ℝ → ((𝐹‘1)↑2) ∈ ℝ)
15 resqcl 13772 . . . . . . . 8 ((𝐹‘2) ∈ ℝ → ((𝐹‘2)↑2) ∈ ℝ)
1614, 15anim12i 612 . . . . . . 7 (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (((𝐹‘1)↑2) ∈ ℝ ∧ ((𝐹‘2)↑2) ∈ ℝ))
17 sqge0 13783 . . . . . . . 8 ((𝐹‘1) ∈ ℝ → 0 ≤ ((𝐹‘1)↑2))
18 sqge0 13783 . . . . . . . 8 ((𝐹‘2) ∈ ℝ → 0 ≤ ((𝐹‘2)↑2))
1917, 18anim12i 612 . . . . . . 7 (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → (0 ≤ ((𝐹‘1)↑2) ∧ 0 ≤ ((𝐹‘2)↑2)))
20 addge0 11394 . . . . . . 7 (((((𝐹‘1)↑2) ∈ ℝ ∧ ((𝐹‘2)↑2) ∈ ℝ) ∧ (0 ≤ ((𝐹‘1)↑2) ∧ 0 ≤ ((𝐹‘2)↑2))) → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))
2116, 19, 20syl2anc 583 . . . . . 6 (((𝐹‘1) ∈ ℝ ∧ (𝐹‘2) ∈ ℝ) → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))
229, 10, 21syl2anc 583 . . . . 5 (𝐹𝑋 → 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))
2313, 22resqrtcld 15057 . . . 4 (𝐹𝑋 → (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ)
2413, 22sqrtge0d 15060 . . . 4 (𝐹𝑋 → 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
2523, 24jca 511 . . 3 (𝐹𝑋 → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ ∧ 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))))
26 rprege0 12674 . . 3 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
27 lt2sq 13780 . . 3 ((((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) ∈ ℝ ∧ 0 ≤ (√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))) ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅 ↔ ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2)))
2825, 26, 27syl2an 595 . 2 ((𝐹𝑋𝑅 ∈ ℝ+) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2))) < 𝑅 ↔ ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2)))
2913, 22jca 511 . . . . 5 (𝐹𝑋 → ((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
3029adantr 480 . . . 4 ((𝐹𝑋𝑅 ∈ ℝ+) → ((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))))
31 resqrtth 14895 . . . 4 (((((𝐹‘1)↑2) + ((𝐹‘2)↑2)) ∈ ℝ ∧ 0 ≤ (((𝐹‘1)↑2) + ((𝐹‘2)↑2))) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))
3230, 31syl 17 . . 3 ((𝐹𝑋𝑅 ∈ ℝ+) → ((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) = (((𝐹‘1)↑2) + ((𝐹‘2)↑2)))
3332breq1d 5080 . 2 ((𝐹𝑋𝑅 ∈ ℝ+) → (((√‘(((𝐹‘1)↑2) + ((𝐹‘2)↑2)))↑2) < (𝑅↑2) ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2)))
347, 28, 333bitrd 304 1 ((𝐹𝑋𝑅 ∈ ℝ+) → ((𝐹𝐷 0 ) < 𝑅 ↔ (((𝐹‘1)↑2) + ((𝐹‘2)↑2)) < (𝑅↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {csn 4558  {cpr 4560   class class class wbr 5070   × cxp 5578  cfv 6418  (class class class)co 7255  m cmap 8573  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  2c2 11958  +crp 12659  cexp 13710  csqrt 14872  distcds 16897  𝔼hilcehl 24453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-refld 20722  df-dsmm 20849  df-frlm 20864  df-nm 23644  df-tng 23646  df-tcph 24238  df-rrx 24454  df-ehl 24455
This theorem is referenced by:  inlinecirc02p  46021
  Copyright terms: Public domain W3C validator