Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0 Structured version   Visualization version   GIF version

Theorem itsclc0 44765
Description: The intersection points of a line 𝐿 and a circle around the origin. (Contributed by AV, 25-Feb-2023.)
Hypotheses
Ref Expression
itsclc0.i 𝐼 = {1, 2}
itsclc0.e 𝐸 = (ℝ^‘𝐼)
itsclc0.p 𝑃 = (ℝ ↑m 𝐼)
itsclc0.s 𝑆 = (Sphere‘𝐸)
itsclc0.0 0 = (𝐼 × {0})
itsclc0.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclc0.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
itsclc0.l 𝐿 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
Assertion
Ref Expression
itsclc0 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑅,𝑝   𝑋,𝑝   0 ,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑄(𝑝)   𝑆(𝑝)   𝐿(𝑝)

Proof of Theorem itsclc0
StepHypRef Expression
1 rprege0 12407 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
2 elrege0 12845 . . . . . . 7 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
31, 2sylibr 236 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ (0[,)+∞))
43adantr 483 . . . . 5 ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) → 𝑅 ∈ (0[,)+∞))
543ad2ant3 1131 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝑅 ∈ (0[,)+∞))
6 itsclc0.i . . . . . 6 𝐼 = {1, 2}
7 itsclc0.e . . . . . 6 𝐸 = (ℝ^‘𝐼)
8 itsclc0.p . . . . . 6 𝑃 = (ℝ ↑m 𝐼)
9 itsclc0.s . . . . . 6 𝑆 = (Sphere‘𝐸)
10 itsclc0.0 . . . . . 6 0 = (𝐼 × {0})
11 eqid 2823 . . . . . 6 {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
126, 7, 8, 9, 10, 112sphere0 44744 . . . . 5 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
1312eleq2d 2900 . . . 4 (𝑅 ∈ (0[,)+∞) → (𝑋 ∈ ( 0 𝑆𝑅) ↔ 𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}))
145, 13syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋 ∈ ( 0 𝑆𝑅) ↔ 𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}))
15 fveq1 6671 . . . . . . . 8 (𝑝 = 𝑋 → (𝑝‘1) = (𝑋‘1))
1615oveq2d 7174 . . . . . . 7 (𝑝 = 𝑋 → (𝐴 · (𝑝‘1)) = (𝐴 · (𝑋‘1)))
17 fveq1 6671 . . . . . . . 8 (𝑝 = 𝑋 → (𝑝‘2) = (𝑋‘2))
1817oveq2d 7174 . . . . . . 7 (𝑝 = 𝑋 → (𝐵 · (𝑝‘2)) = (𝐵 · (𝑋‘2)))
1916, 18oveq12d 7176 . . . . . 6 (𝑝 = 𝑋 → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))))
2019eqeq1d 2825 . . . . 5 (𝑝 = 𝑋 → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶))
21 itsclc0.l . . . . 5 𝐿 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
2220, 21elrab2 3685 . . . 4 (𝑋𝐿 ↔ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶))
2322a1i 11 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋𝐿 ↔ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)))
2414, 23anbi12d 632 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) ↔ (𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶))))
2515oveq1d 7173 . . . . . . 7 (𝑝 = 𝑋 → ((𝑝‘1)↑2) = ((𝑋‘1)↑2))
2617oveq1d 7173 . . . . . . 7 (𝑝 = 𝑋 → ((𝑝‘2)↑2) = ((𝑋‘2)↑2))
2725, 26oveq12d 7176 . . . . . 6 (𝑝 = 𝑋 → (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (((𝑋‘1)↑2) + ((𝑋‘2)↑2)))
2827eqeq1d 2825 . . . . 5 (𝑝 = 𝑋 → ((((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2) ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)))
2928elrab 3682 . . . 4 (𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ↔ (𝑋𝑃 ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)))
30 3simpa 1144 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)))
3130adantr 483 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)))
32 simpl3 1189 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷))
336, 8rrx2pxel 44705 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
346, 8rrx2pyel 44706 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
3533, 34jca 514 . . . . . . . . . 10 (𝑋𝑃 → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
3635adantl 484 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
37 itsclc0.q . . . . . . . . . 10 𝑄 = ((𝐴↑2) + (𝐵↑2))
38 itsclc0.d . . . . . . . . . 10 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
3937, 38itsclc0xyqsol 44762 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ)) → (((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4031, 32, 36, 39syl3anc 1367 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → (((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4140expcomd 419 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → (((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶 → ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4241expimpd 456 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) → ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4342com23 86 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) → ((𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4443adantld 493 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋𝑃 ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)) → ((𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4529, 44syl5bi 244 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} → ((𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4645impd 413 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4724, 46sylbid 242 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  {crab 3144  {csn 4569  {cpr 4571   class class class wbr 5068   × cxp 5555  cfv 6357  (class class class)co 7158  m cmap 8408  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  +∞cpnf 10674  cle 10678  cmin 10872   / cdiv 11299  2c2 11695  +crp 12392  [,)cico 12743  cexp 13432  csqrt 14594  ℝ^crrx 23988  Spherecsph 44722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-0g 16717  df-gsum 16718  df-prds 16723  df-pws 16725  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-rnghom 19469  df-drng 19506  df-field 19507  df-subrg 19535  df-staf 19618  df-srng 19619  df-lmod 19638  df-lss 19706  df-sra 19946  df-rgmod 19947  df-xmet 20540  df-met 20541  df-cnfld 20548  df-refld 20751  df-dsmm 20878  df-frlm 20893  df-nm 23194  df-tng 23196  df-tcph 23775  df-rrx 23990  df-ehl 23991  df-sph 44724
This theorem is referenced by:  itsclinecirc0  44767
  Copyright terms: Public domain W3C validator