Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0 Structured version   Visualization version   GIF version

Theorem itsclc0 48621
Description: The intersection points of a line 𝐿 and a circle around the origin. (Contributed by AV, 25-Feb-2023.)
Hypotheses
Ref Expression
itsclc0.i 𝐼 = {1, 2}
itsclc0.e 𝐸 = (ℝ^‘𝐼)
itsclc0.p 𝑃 = (ℝ ↑m 𝐼)
itsclc0.s 𝑆 = (Sphere‘𝐸)
itsclc0.0 0 = (𝐼 × {0})
itsclc0.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclc0.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
itsclc0.l 𝐿 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
Assertion
Ref Expression
itsclc0 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑅,𝑝   𝑋,𝑝   0 ,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑄(𝑝)   𝑆(𝑝)   𝐿(𝑝)

Proof of Theorem itsclc0
StepHypRef Expression
1 rprege0 13048 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
2 elrege0 13491 . . . . . . 7 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
31, 2sylibr 234 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ (0[,)+∞))
43adantr 480 . . . . 5 ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) → 𝑅 ∈ (0[,)+∞))
543ad2ant3 1134 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝑅 ∈ (0[,)+∞))
6 itsclc0.i . . . . . 6 𝐼 = {1, 2}
7 itsclc0.e . . . . . 6 𝐸 = (ℝ^‘𝐼)
8 itsclc0.p . . . . . 6 𝑃 = (ℝ ↑m 𝐼)
9 itsclc0.s . . . . . 6 𝑆 = (Sphere‘𝐸)
10 itsclc0.0 . . . . . 6 0 = (𝐼 × {0})
11 eqid 2735 . . . . . 6 {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
126, 7, 8, 9, 10, 112sphere0 48600 . . . . 5 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
1312eleq2d 2825 . . . 4 (𝑅 ∈ (0[,)+∞) → (𝑋 ∈ ( 0 𝑆𝑅) ↔ 𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}))
145, 13syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋 ∈ ( 0 𝑆𝑅) ↔ 𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}))
15 fveq1 6906 . . . . . . . 8 (𝑝 = 𝑋 → (𝑝‘1) = (𝑋‘1))
1615oveq2d 7447 . . . . . . 7 (𝑝 = 𝑋 → (𝐴 · (𝑝‘1)) = (𝐴 · (𝑋‘1)))
17 fveq1 6906 . . . . . . . 8 (𝑝 = 𝑋 → (𝑝‘2) = (𝑋‘2))
1817oveq2d 7447 . . . . . . 7 (𝑝 = 𝑋 → (𝐵 · (𝑝‘2)) = (𝐵 · (𝑋‘2)))
1916, 18oveq12d 7449 . . . . . 6 (𝑝 = 𝑋 → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))))
2019eqeq1d 2737 . . . . 5 (𝑝 = 𝑋 → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶))
21 itsclc0.l . . . . 5 𝐿 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
2220, 21elrab2 3698 . . . 4 (𝑋𝐿 ↔ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶))
2322a1i 11 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋𝐿 ↔ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)))
2414, 23anbi12d 632 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) ↔ (𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶))))
2515oveq1d 7446 . . . . . . 7 (𝑝 = 𝑋 → ((𝑝‘1)↑2) = ((𝑋‘1)↑2))
2617oveq1d 7446 . . . . . . 7 (𝑝 = 𝑋 → ((𝑝‘2)↑2) = ((𝑋‘2)↑2))
2725, 26oveq12d 7449 . . . . . 6 (𝑝 = 𝑋 → (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (((𝑋‘1)↑2) + ((𝑋‘2)↑2)))
2827eqeq1d 2737 . . . . 5 (𝑝 = 𝑋 → ((((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2) ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)))
2928elrab 3695 . . . 4 (𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ↔ (𝑋𝑃 ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)))
30 3simpa 1147 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)))
3130adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)))
32 simpl3 1192 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷))
336, 8rrx2pxel 48561 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
346, 8rrx2pyel 48562 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
3533, 34jca 511 . . . . . . . . . 10 (𝑋𝑃 → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
3635adantl 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
37 itsclc0.q . . . . . . . . . 10 𝑄 = ((𝐴↑2) + (𝐵↑2))
38 itsclc0.d . . . . . . . . . 10 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
3937, 38itsclc0xyqsol 48618 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ)) → (((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4031, 32, 36, 39syl3anc 1370 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → (((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4140expcomd 416 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → (((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶 → ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4241expimpd 453 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) → ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4342com23 86 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) → ((𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4443adantld 490 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋𝑃 ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)) → ((𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4529, 44biimtrid 242 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} → ((𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4645impd 410 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4724, 46sylbid 240 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) → (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  {crab 3433  {csn 4631  {cpr 4633   class class class wbr 5148   × cxp 5687  cfv 6563  (class class class)co 7431  m cmap 8865  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  +∞cpnf 11290  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  +crp 13032  [,)cico 13386  cexp 14099  csqrt 15269  ℝ^crrx 25431  Spherecsph 48578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-xmet 21375  df-met 21376  df-cnfld 21383  df-refld 21641  df-dsmm 21770  df-frlm 21785  df-nm 24611  df-tng 24613  df-tcph 25217  df-rrx 25433  df-ehl 25434  df-sph 48580
This theorem is referenced by:  itsclinecirc0  48623
  Copyright terms: Public domain W3C validator