Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2vlinest Structured version   Visualization version   GIF version

Theorem rrx2vlinest 46817
Description: The vertical line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrx2vlinest ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   𝐿(𝑝)

Proof of Theorem rrx2vlinest
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6841 . . . . 5 (𝑋 = 𝑌 → (𝑋‘2) = (𝑌‘2))
21necon3i 2976 . . . 4 ((𝑋‘2) ≠ (𝑌‘2) → 𝑋𝑌)
32adantl 482 . . 3 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑋𝑌)
4 rrx2line.i . . . 4 𝐼 = {1, 2}
5 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
6 rrx2line.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
7 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
84, 5, 6, 7rrx2line 46816 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
93, 8syl3an3 1165 . 2 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
10 oveq2 7365 . . . . . . . . . . . . . 14 ((𝑌‘1) = (𝑋‘1) → (𝑡 · (𝑌‘1)) = (𝑡 · (𝑋‘1)))
1110oveq2d 7373 . . . . . . . . . . . . 13 ((𝑌‘1) = (𝑋‘1) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1211eqcoms 2744 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1312adantr 481 . . . . . . . . . . 11 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
14133ad2ant3 1135 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1514adantr 481 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1615adantr 481 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
174, 6rrx2pxel 46787 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1817recnd 11183 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
19183ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘1) ∈ ℂ)
2019adantr 481 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘1) ∈ ℂ)
2120adantr 481 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (𝑋‘1) ∈ ℂ)
22 recn 11141 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
2322adantl 482 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
2421, 23affineid 46780 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))) = (𝑋‘1))
2516, 24eqtrd 2776 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (𝑋‘1))
2625eqeq2d 2747 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ↔ (𝑝‘1) = (𝑋‘1)))
2726anbi1d 630 . . . . 5 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
2827rexbidva 3173 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
29 simpl 483 . . . . . . 7 (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1))
3029a1i 11 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1)))
3130rexlimdva 3152 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1)))
324, 6rrx2pyel 46788 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3332adantl 482 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
344, 6rrx2pyel 46788 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
35343ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘2) ∈ ℝ)
3635adantr 481 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
3733, 36resubcld 11583 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘2) − (𝑋‘2)) ∈ ℝ)
384, 6rrx2pyel 46788 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
39383ad2ant2 1134 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ∈ ℝ)
4039, 35resubcld 11583 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
4140adantr 481 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
4238recnd 11183 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
43423ad2ant2 1134 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ∈ ℂ)
4434recnd 11183 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
45443ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘2) ∈ ℂ)
46 simpr 485 . . . . . . . . . . . . 13 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ≠ (𝑌‘2))
4746necomd 2999 . . . . . . . . . . . 12 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘2) ≠ (𝑋‘2))
48473ad2ant3 1135 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ≠ (𝑋‘2))
4943, 45, 48subne0d 11521 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
5049adantr 481 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
5137, 41, 50redivcld 11983 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℝ)
5251adantr 481 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℝ)
53 oveq2 7365 . . . . . . . . . . . 12 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (1 − 𝑡) = (1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))))
5453oveq1d 7372 . . . . . . . . . . 11 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → ((1 − 𝑡) · (𝑋‘2)) = ((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)))
55 oveq1 7364 . . . . . . . . . . 11 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (𝑡 · (𝑌‘2)) = ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))
5654, 55oveq12d 7375 . . . . . . . . . 10 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))
5756eqeq2d 2747 . . . . . . . . 9 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → ((𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))) ↔ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))))
5857anbi2d 629 . . . . . . . 8 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))))
5958adantl 482 . . . . . . 7 (((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) ∧ 𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))))
60 simpr 485 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘1) = (𝑋‘1))
6144mulid2d 11173 . . . . . . . . . . . . . 14 (𝑋𝑃 → (1 · (𝑋‘2)) = (𝑋‘2))
62613ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (1 · (𝑋‘2)) = (𝑋‘2))
6362adantr 481 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (1 · (𝑋‘2)) = (𝑋‘2))
6437recnd 11183 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘2) − (𝑋‘2)) ∈ ℂ)
6542adantl 482 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℂ)
6644adantr 481 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℂ)
6765, 66subcld 11512 . . . . . . . . . . . . . . 15 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
68673adant3 1132 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
6968adantr 481 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
7064, 69, 50divcan1d 11932 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2))) = ((𝑝‘2) − (𝑋‘2)))
7163, 70oveq12d 7375 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))) = ((𝑋‘2) + ((𝑝‘2) − (𝑋‘2))))
7245adantr 481 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
7332recnd 11183 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
7473adantl 482 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℂ)
7572, 74pncan3d 11515 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑋‘2) + ((𝑝‘2) − (𝑋‘2))) = (𝑝‘2))
7671, 75eqtr2d 2777 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
7776adantr 481 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘2) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
78 1cnd 11150 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → 1 ∈ ℂ)
7951recnd 11183 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℂ)
8043adantr 481 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
8178, 79, 72, 80submuladdmuld 46777 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
8281adantr 481 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
8377, 82eqtr4d 2779 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))
8460, 83jca 512 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))))
8552, 59, 84rspcedvd 3583 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))
8685ex 413 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑋‘1) → ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
8731, 86impbid 211 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑋‘1)))
8828, 87bitrd 278 . . 3 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑋‘1)))
8988rabbidva 3414 . 2 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
909, 89eqtrd 2776 1 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  {crab 3407  {cpr 4588  cfv 6496  (class class class)co 7357  m cmap 8765  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385   / cdiv 11812  2c2 12208  ℝ^crrx 24747  LineMcline 46803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-staf 20304  df-srng 20305  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-cnfld 20797  df-refld 21009  df-dsmm 21138  df-frlm 21153  df-tng 23940  df-tcph 24533  df-rrx 24749  df-line 46805
This theorem is referenced by:  rrx2linest  46818  line2y  46831
  Copyright terms: Public domain W3C validator