Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2vlinest Structured version   Visualization version   GIF version

Theorem rrx2vlinest 46087
Description: The vertical line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrx2vlinest ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   𝐿(𝑝)

Proof of Theorem rrx2vlinest
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6773 . . . . 5 (𝑋 = 𝑌 → (𝑋‘2) = (𝑌‘2))
21necon3i 2976 . . . 4 ((𝑋‘2) ≠ (𝑌‘2) → 𝑋𝑌)
32adantl 482 . . 3 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑋𝑌)
4 rrx2line.i . . . 4 𝐼 = {1, 2}
5 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
6 rrx2line.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
7 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
84, 5, 6, 7rrx2line 46086 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
93, 8syl3an3 1164 . 2 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
10 oveq2 7283 . . . . . . . . . . . . . 14 ((𝑌‘1) = (𝑋‘1) → (𝑡 · (𝑌‘1)) = (𝑡 · (𝑋‘1)))
1110oveq2d 7291 . . . . . . . . . . . . 13 ((𝑌‘1) = (𝑋‘1) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1211eqcoms 2746 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1312adantr 481 . . . . . . . . . . 11 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
14133ad2ant3 1134 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1514adantr 481 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1615adantr 481 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
174, 6rrx2pxel 46057 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1817recnd 11003 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
19183ad2ant1 1132 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘1) ∈ ℂ)
2019adantr 481 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘1) ∈ ℂ)
2120adantr 481 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (𝑋‘1) ∈ ℂ)
22 recn 10961 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
2322adantl 482 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
2421, 23affineid 46050 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))) = (𝑋‘1))
2516, 24eqtrd 2778 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (𝑋‘1))
2625eqeq2d 2749 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ↔ (𝑝‘1) = (𝑋‘1)))
2726anbi1d 630 . . . . 5 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
2827rexbidva 3225 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
29 simpl 483 . . . . . . 7 (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1))
3029a1i 11 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1)))
3130rexlimdva 3213 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1)))
324, 6rrx2pyel 46058 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3332adantl 482 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
344, 6rrx2pyel 46058 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
35343ad2ant1 1132 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘2) ∈ ℝ)
3635adantr 481 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
3733, 36resubcld 11403 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘2) − (𝑋‘2)) ∈ ℝ)
384, 6rrx2pyel 46058 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
39383ad2ant2 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ∈ ℝ)
4039, 35resubcld 11403 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
4140adantr 481 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
4238recnd 11003 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
43423ad2ant2 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ∈ ℂ)
4434recnd 11003 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
45443ad2ant1 1132 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘2) ∈ ℂ)
46 simpr 485 . . . . . . . . . . . . 13 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ≠ (𝑌‘2))
4746necomd 2999 . . . . . . . . . . . 12 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘2) ≠ (𝑋‘2))
48473ad2ant3 1134 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ≠ (𝑋‘2))
4943, 45, 48subne0d 11341 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
5049adantr 481 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
5137, 41, 50redivcld 11803 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℝ)
5251adantr 481 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℝ)
53 oveq2 7283 . . . . . . . . . . . 12 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (1 − 𝑡) = (1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))))
5453oveq1d 7290 . . . . . . . . . . 11 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → ((1 − 𝑡) · (𝑋‘2)) = ((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)))
55 oveq1 7282 . . . . . . . . . . 11 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (𝑡 · (𝑌‘2)) = ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))
5654, 55oveq12d 7293 . . . . . . . . . 10 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))
5756eqeq2d 2749 . . . . . . . . 9 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → ((𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))) ↔ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))))
5857anbi2d 629 . . . . . . . 8 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))))
5958adantl 482 . . . . . . 7 (((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) ∧ 𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))))
60 simpr 485 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘1) = (𝑋‘1))
6144mulid2d 10993 . . . . . . . . . . . . . 14 (𝑋𝑃 → (1 · (𝑋‘2)) = (𝑋‘2))
62613ad2ant1 1132 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (1 · (𝑋‘2)) = (𝑋‘2))
6362adantr 481 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (1 · (𝑋‘2)) = (𝑋‘2))
6437recnd 11003 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘2) − (𝑋‘2)) ∈ ℂ)
6542adantl 482 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℂ)
6644adantr 481 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℂ)
6765, 66subcld 11332 . . . . . . . . . . . . . . 15 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
68673adant3 1131 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
6968adantr 481 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
7064, 69, 50divcan1d 11752 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2))) = ((𝑝‘2) − (𝑋‘2)))
7163, 70oveq12d 7293 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))) = ((𝑋‘2) + ((𝑝‘2) − (𝑋‘2))))
7245adantr 481 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
7332recnd 11003 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
7473adantl 482 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℂ)
7572, 74pncan3d 11335 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑋‘2) + ((𝑝‘2) − (𝑋‘2))) = (𝑝‘2))
7671, 75eqtr2d 2779 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
7776adantr 481 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘2) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
78 1cnd 10970 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → 1 ∈ ℂ)
7951recnd 11003 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℂ)
8043adantr 481 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
8178, 79, 72, 80submuladdmuld 46047 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
8281adantr 481 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
8377, 82eqtr4d 2781 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))
8460, 83jca 512 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))))
8552, 59, 84rspcedvd 3563 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))
8685ex 413 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑋‘1) → ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
8731, 86impbid 211 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑋‘1)))
8828, 87bitrd 278 . . 3 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑋‘1)))
8988rabbidva 3413 . 2 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
909, 89eqtrd 2778 1 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  {cpr 4563  cfv 6433  (class class class)co 7275  m cmap 8615  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205   / cdiv 11632  2c2 12028  ℝ^crrx 24547  LineMcline 46073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-prds 17158  df-pws 17160  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-ghm 18832  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-field 19994  df-subrg 20022  df-staf 20105  df-srng 20106  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-refld 20810  df-dsmm 20939  df-frlm 20954  df-tng 23740  df-tcph 24333  df-rrx 24549  df-line 46075
This theorem is referenced by:  rrx2linest  46088  line2y  46101
  Copyright terms: Public domain W3C validator