Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2vlinest Structured version   Visualization version   GIF version

Theorem rrx2vlinest 48734
Description: The vertical line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrx2vlinest ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   𝐿(𝑝)

Proof of Theorem rrx2vlinest
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6860 . . . . 5 (𝑋 = 𝑌 → (𝑋‘2) = (𝑌‘2))
21necon3i 2958 . . . 4 ((𝑋‘2) ≠ (𝑌‘2) → 𝑋𝑌)
32adantl 481 . . 3 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑋𝑌)
4 rrx2line.i . . . 4 𝐼 = {1, 2}
5 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
6 rrx2line.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
7 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
84, 5, 6, 7rrx2line 48733 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
93, 8syl3an3 1165 . 2 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
10 oveq2 7398 . . . . . . . . . . . . . 14 ((𝑌‘1) = (𝑋‘1) → (𝑡 · (𝑌‘1)) = (𝑡 · (𝑋‘1)))
1110oveq2d 7406 . . . . . . . . . . . . 13 ((𝑌‘1) = (𝑋‘1) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1211eqcoms 2738 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1312adantr 480 . . . . . . . . . . 11 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
14133ad2ant3 1135 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1514adantr 480 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1615adantr 480 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
174, 6rrx2pxel 48704 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1817recnd 11209 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
19183ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘1) ∈ ℂ)
2019adantr 480 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘1) ∈ ℂ)
2120adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (𝑋‘1) ∈ ℂ)
22 recn 11165 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
2322adantl 481 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
2421, 23affineid 48697 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))) = (𝑋‘1))
2516, 24eqtrd 2765 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (𝑋‘1))
2625eqeq2d 2741 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ↔ (𝑝‘1) = (𝑋‘1)))
2726anbi1d 631 . . . . 5 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
2827rexbidva 3156 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
29 simpl 482 . . . . . . 7 (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1))
3029a1i 11 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1)))
3130rexlimdva 3135 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1)))
324, 6rrx2pyel 48705 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3332adantl 481 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
344, 6rrx2pyel 48705 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
35343ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘2) ∈ ℝ)
3635adantr 480 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
3733, 36resubcld 11613 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘2) − (𝑋‘2)) ∈ ℝ)
384, 6rrx2pyel 48705 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
39383ad2ant2 1134 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ∈ ℝ)
4039, 35resubcld 11613 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
4140adantr 480 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
4238recnd 11209 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
43423ad2ant2 1134 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ∈ ℂ)
4434recnd 11209 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
45443ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘2) ∈ ℂ)
46 simpr 484 . . . . . . . . . . . . 13 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ≠ (𝑌‘2))
4746necomd 2981 . . . . . . . . . . . 12 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘2) ≠ (𝑋‘2))
48473ad2ant3 1135 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ≠ (𝑋‘2))
4943, 45, 48subne0d 11549 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
5049adantr 480 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
5137, 41, 50redivcld 12017 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℝ)
5251adantr 480 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℝ)
53 oveq2 7398 . . . . . . . . . . . 12 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (1 − 𝑡) = (1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))))
5453oveq1d 7405 . . . . . . . . . . 11 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → ((1 − 𝑡) · (𝑋‘2)) = ((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)))
55 oveq1 7397 . . . . . . . . . . 11 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (𝑡 · (𝑌‘2)) = ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))
5654, 55oveq12d 7408 . . . . . . . . . 10 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))
5756eqeq2d 2741 . . . . . . . . 9 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → ((𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))) ↔ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))))
5857anbi2d 630 . . . . . . . 8 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))))
5958adantl 481 . . . . . . 7 (((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) ∧ 𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))))
60 simpr 484 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘1) = (𝑋‘1))
6144mullidd 11199 . . . . . . . . . . . . . 14 (𝑋𝑃 → (1 · (𝑋‘2)) = (𝑋‘2))
62613ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (1 · (𝑋‘2)) = (𝑋‘2))
6362adantr 480 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (1 · (𝑋‘2)) = (𝑋‘2))
6437recnd 11209 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘2) − (𝑋‘2)) ∈ ℂ)
6542adantl 481 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℂ)
6644adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℂ)
6765, 66subcld 11540 . . . . . . . . . . . . . . 15 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
68673adant3 1132 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
6968adantr 480 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
7064, 69, 50divcan1d 11966 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2))) = ((𝑝‘2) − (𝑋‘2)))
7163, 70oveq12d 7408 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))) = ((𝑋‘2) + ((𝑝‘2) − (𝑋‘2))))
7245adantr 480 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
7332recnd 11209 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
7473adantl 481 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℂ)
7572, 74pncan3d 11543 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑋‘2) + ((𝑝‘2) − (𝑋‘2))) = (𝑝‘2))
7671, 75eqtr2d 2766 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
7776adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘2) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
78 1cnd 11176 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → 1 ∈ ℂ)
7951recnd 11209 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℂ)
8043adantr 480 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
8178, 79, 72, 80submuladdmuld 48694 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
8281adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
8377, 82eqtr4d 2768 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))
8460, 83jca 511 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))))
8552, 59, 84rspcedvd 3593 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))
8685ex 412 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑋‘1) → ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
8731, 86impbid 212 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑋‘1)))
8828, 87bitrd 279 . . 3 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑋‘1)))
8988rabbidva 3415 . 2 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
909, 89eqtrd 2765 1 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  {cpr 4594  cfv 6514  (class class class)co 7390  m cmap 8802  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412   / cdiv 11842  2c2 12248  ℝ^crrx 25290  LineMcline 48720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-field 20648  df-staf 20755  df-srng 20756  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-cnfld 21272  df-refld 21521  df-dsmm 21648  df-frlm 21663  df-tng 24479  df-tcph 25076  df-rrx 25292  df-line 48722
This theorem is referenced by:  rrx2linest  48735  line2y  48748
  Copyright terms: Public domain W3C validator