Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2vlinest Structured version   Visualization version   GIF version

Theorem rrx2vlinest 48475
Description: The vertical line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrx2vlinest ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   𝐿(𝑝)

Proof of Theorem rrx2vlinest
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6919 . . . . 5 (𝑋 = 𝑌 → (𝑋‘2) = (𝑌‘2))
21necon3i 2979 . . . 4 ((𝑋‘2) ≠ (𝑌‘2) → 𝑋𝑌)
32adantl 481 . . 3 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑋𝑌)
4 rrx2line.i . . . 4 𝐼 = {1, 2}
5 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
6 rrx2line.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
7 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
84, 5, 6, 7rrx2line 48474 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
93, 8syl3an3 1165 . 2 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
10 oveq2 7456 . . . . . . . . . . . . . 14 ((𝑌‘1) = (𝑋‘1) → (𝑡 · (𝑌‘1)) = (𝑡 · (𝑋‘1)))
1110oveq2d 7464 . . . . . . . . . . . . 13 ((𝑌‘1) = (𝑋‘1) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1211eqcoms 2748 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1312adantr 480 . . . . . . . . . . 11 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
14133ad2ant3 1135 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1514adantr 480 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1615adantr 480 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
174, 6rrx2pxel 48445 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1817recnd 11318 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
19183ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘1) ∈ ℂ)
2019adantr 480 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘1) ∈ ℂ)
2120adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (𝑋‘1) ∈ ℂ)
22 recn 11274 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
2322adantl 481 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
2421, 23affineid 48438 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))) = (𝑋‘1))
2516, 24eqtrd 2780 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (𝑋‘1))
2625eqeq2d 2751 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ↔ (𝑝‘1) = (𝑋‘1)))
2726anbi1d 630 . . . . 5 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
2827rexbidva 3183 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
29 simpl 482 . . . . . . 7 (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1))
3029a1i 11 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1)))
3130rexlimdva 3161 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1)))
324, 6rrx2pyel 48446 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3332adantl 481 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
344, 6rrx2pyel 48446 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
35343ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘2) ∈ ℝ)
3635adantr 480 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
3733, 36resubcld 11718 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘2) − (𝑋‘2)) ∈ ℝ)
384, 6rrx2pyel 48446 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
39383ad2ant2 1134 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ∈ ℝ)
4039, 35resubcld 11718 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
4140adantr 480 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
4238recnd 11318 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
43423ad2ant2 1134 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ∈ ℂ)
4434recnd 11318 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
45443ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘2) ∈ ℂ)
46 simpr 484 . . . . . . . . . . . . 13 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ≠ (𝑌‘2))
4746necomd 3002 . . . . . . . . . . . 12 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘2) ≠ (𝑋‘2))
48473ad2ant3 1135 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ≠ (𝑋‘2))
4943, 45, 48subne0d 11656 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
5049adantr 480 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
5137, 41, 50redivcld 12122 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℝ)
5251adantr 480 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℝ)
53 oveq2 7456 . . . . . . . . . . . 12 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (1 − 𝑡) = (1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))))
5453oveq1d 7463 . . . . . . . . . . 11 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → ((1 − 𝑡) · (𝑋‘2)) = ((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)))
55 oveq1 7455 . . . . . . . . . . 11 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (𝑡 · (𝑌‘2)) = ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))
5654, 55oveq12d 7466 . . . . . . . . . 10 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))
5756eqeq2d 2751 . . . . . . . . 9 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → ((𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))) ↔ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))))
5857anbi2d 629 . . . . . . . 8 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))))
5958adantl 481 . . . . . . 7 (((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) ∧ 𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))))
60 simpr 484 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘1) = (𝑋‘1))
6144mullidd 11308 . . . . . . . . . . . . . 14 (𝑋𝑃 → (1 · (𝑋‘2)) = (𝑋‘2))
62613ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (1 · (𝑋‘2)) = (𝑋‘2))
6362adantr 480 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (1 · (𝑋‘2)) = (𝑋‘2))
6437recnd 11318 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘2) − (𝑋‘2)) ∈ ℂ)
6542adantl 481 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℂ)
6644adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℂ)
6765, 66subcld 11647 . . . . . . . . . . . . . . 15 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
68673adant3 1132 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
6968adantr 480 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
7064, 69, 50divcan1d 12071 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2))) = ((𝑝‘2) − (𝑋‘2)))
7163, 70oveq12d 7466 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))) = ((𝑋‘2) + ((𝑝‘2) − (𝑋‘2))))
7245adantr 480 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
7332recnd 11318 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
7473adantl 481 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℂ)
7572, 74pncan3d 11650 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑋‘2) + ((𝑝‘2) − (𝑋‘2))) = (𝑝‘2))
7671, 75eqtr2d 2781 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
7776adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘2) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
78 1cnd 11285 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → 1 ∈ ℂ)
7951recnd 11318 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℂ)
8043adantr 480 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
8178, 79, 72, 80submuladdmuld 48435 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
8281adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
8377, 82eqtr4d 2783 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))
8460, 83jca 511 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))))
8552, 59, 84rspcedvd 3637 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))
8685ex 412 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑋‘1) → ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
8731, 86impbid 212 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑋‘1)))
8828, 87bitrd 279 . . 3 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑋‘1)))
8988rabbidva 3450 . 2 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
909, 89eqtrd 2780 1 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  {cpr 4650  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520   / cdiv 11947  2c2 12348  ℝ^crrx 25436  LineMcline 48461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-staf 20862  df-srng 20863  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-refld 21646  df-dsmm 21775  df-frlm 21790  df-tng 24618  df-tcph 25222  df-rrx 25438  df-line 48463
This theorem is referenced by:  rrx2linest  48476  line2y  48489
  Copyright terms: Public domain W3C validator