Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2vlinest Structured version   Visualization version   GIF version

Theorem rrx2vlinest 48867
Description: The vertical line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
Assertion
Ref Expression
rrx2vlinest ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   𝐿(𝑝)

Proof of Theorem rrx2vlinest
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6827 . . . . 5 (𝑋 = 𝑌 → (𝑋‘2) = (𝑌‘2))
21necon3i 2961 . . . 4 ((𝑋‘2) ≠ (𝑌‘2) → 𝑋𝑌)
32adantl 481 . . 3 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → 𝑋𝑌)
4 rrx2line.i . . . 4 𝐼 = {1, 2}
5 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
6 rrx2line.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
7 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
84, 5, 6, 7rrx2line 48866 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
93, 8syl3an3 1165 . 2 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
10 oveq2 7360 . . . . . . . . . . . . . 14 ((𝑌‘1) = (𝑋‘1) → (𝑡 · (𝑌‘1)) = (𝑡 · (𝑋‘1)))
1110oveq2d 7368 . . . . . . . . . . . . 13 ((𝑌‘1) = (𝑋‘1) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1211eqcoms 2741 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1312adantr 480 . . . . . . . . . . 11 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
14133ad2ant3 1135 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1514adantr 480 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
1615adantr 480 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))))
174, 6rrx2pxel 48837 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1817recnd 11147 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
19183ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘1) ∈ ℂ)
2019adantr 480 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘1) ∈ ℂ)
2120adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (𝑋‘1) ∈ ℂ)
22 recn 11103 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
2322adantl 481 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
2421, 23affineid 48830 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑋‘1))) = (𝑋‘1))
2516, 24eqtrd 2768 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) = (𝑋‘1))
2625eqeq2d 2744 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ↔ (𝑝‘1) = (𝑋‘1)))
2726anbi1d 631 . . . . 5 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
2827rexbidva 3155 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
29 simpl 482 . . . . . . 7 (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1))
3029a1i 11 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ 𝑡 ∈ ℝ) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1)))
3130rexlimdva 3134 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) → (𝑝‘1) = (𝑋‘1)))
324, 6rrx2pyel 48838 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3332adantl 481 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
344, 6rrx2pyel 48838 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
35343ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘2) ∈ ℝ)
3635adantr 480 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
3733, 36resubcld 11552 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘2) − (𝑋‘2)) ∈ ℝ)
384, 6rrx2pyel 48838 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
39383ad2ant2 1134 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ∈ ℝ)
4039, 35resubcld 11552 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
4140adantr 480 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
4238recnd 11147 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
43423ad2ant2 1134 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ∈ ℂ)
4434recnd 11147 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
45443ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋‘2) ∈ ℂ)
46 simpr 484 . . . . . . . . . . . . 13 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑋‘2) ≠ (𝑌‘2))
4746necomd 2984 . . . . . . . . . . . 12 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)) → (𝑌‘2) ≠ (𝑋‘2))
48473ad2ant3 1135 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑌‘2) ≠ (𝑋‘2))
4943, 45, 48subne0d 11488 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
5049adantr 480 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
5137, 41, 50redivcld 11956 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℝ)
5251adantr 480 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℝ)
53 oveq2 7360 . . . . . . . . . . . 12 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (1 − 𝑡) = (1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))))
5453oveq1d 7367 . . . . . . . . . . 11 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → ((1 − 𝑡) · (𝑋‘2)) = ((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)))
55 oveq1 7359 . . . . . . . . . . 11 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (𝑡 · (𝑌‘2)) = ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))
5654, 55oveq12d 7370 . . . . . . . . . 10 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))
5756eqeq2d 2744 . . . . . . . . 9 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → ((𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))) ↔ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))))
5857anbi2d 630 . . . . . . . 8 (𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))))
5958adantl 481 . . . . . . 7 (((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) ∧ 𝑡 = (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) → (((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))))
60 simpr 484 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘1) = (𝑋‘1))
6144mullidd 11137 . . . . . . . . . . . . . 14 (𝑋𝑃 → (1 · (𝑋‘2)) = (𝑋‘2))
62613ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (1 · (𝑋‘2)) = (𝑋‘2))
6362adantr 480 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (1 · (𝑋‘2)) = (𝑋‘2))
6437recnd 11147 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘2) − (𝑋‘2)) ∈ ℂ)
6542adantl 481 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℂ)
6644adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℂ)
6765, 66subcld 11479 . . . . . . . . . . . . . . 15 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
68673adant3 1132 . . . . . . . . . . . . . 14 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
6968adantr 480 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
7064, 69, 50divcan1d 11905 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2))) = ((𝑝‘2) − (𝑋‘2)))
7163, 70oveq12d 7370 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))) = ((𝑋‘2) + ((𝑝‘2) − (𝑋‘2))))
7245adantr 480 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
7332recnd 11147 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
7473adantl 481 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℂ)
7572, 74pncan3d 11482 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑋‘2) + ((𝑝‘2) − (𝑋‘2))) = (𝑝‘2))
7671, 75eqtr2d 2769 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑝‘2) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
7776adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘2) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
78 1cnd 11114 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → 1 ∈ ℂ)
7951recnd 11147 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) ∈ ℂ)
8043adantr 480 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
8178, 79, 72, 80submuladdmuld 48827 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
8281adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))) = ((1 · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · ((𝑌‘2) − (𝑋‘2)))))
8377, 82eqtr4d 2771 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2))))
8460, 83jca 511 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − (((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2)))) · (𝑋‘2)) + ((((𝑝‘2) − (𝑋‘2)) / ((𝑌‘2) − (𝑋‘2))) · (𝑌‘2)))))
8552, 59, 84rspcedvd 3575 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) ∧ (𝑝‘1) = (𝑋‘1)) → ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))))
8685ex 412 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑋‘1) → ∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))))
8731, 86impbid 212 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (𝑋‘1) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑋‘1)))
8828, 87bitrd 279 . . 3 (((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑋‘1)))
8988rabbidva 3402 . 2 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
909, 89eqtrd 2768 1 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057  {crab 3396  {cpr 4577  cfv 6486  (class class class)co 7352  m cmap 8756  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  cmin 11351   / cdiv 11781  2c2 12187  ℝ^crrx 25311  LineMcline 48853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092  ax-mulf 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-rp 12893  df-fz 13410  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-0g 17347  df-prds 17353  df-pws 17355  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-ghm 19127  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-subrng 20463  df-subrg 20487  df-drng 20648  df-field 20649  df-staf 20756  df-srng 20757  df-lmod 20797  df-lss 20867  df-sra 21109  df-rgmod 21110  df-cnfld 21294  df-refld 21544  df-dsmm 21671  df-frlm 21686  df-tng 24500  df-tcph 25097  df-rrx 25313  df-line 48855
This theorem is referenced by:  rrx2linest  48868  line2y  48881
  Copyright terms: Public domain W3C validator