Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linest2 Structured version   Visualization version   GIF version

Theorem rrx2linest2 48665
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in another "standard form" (usually with (𝑝‘1) = 𝑥 and (𝑝‘2) = 𝑦). (Contributed by AV, 23-Feb-2023.)
Hypotheses
Ref Expression
rrx2linest2.i 𝐼 = {1, 2}
rrx2linest2.e 𝐸 = (ℝ^‘𝐼)
rrx2linest2.p 𝑃 = (ℝ ↑m 𝐼)
rrx2linest2.l 𝐿 = (LineM𝐸)
rrx2linest2.a 𝐴 = ((𝑋‘2) − (𝑌‘2))
rrx2linest2.b 𝐵 = ((𝑌‘1) − (𝑋‘1))
rrx2linest2.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
rrx2linest2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝐶(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linest2
StepHypRef Expression
1 rrx2linest2.i . . 3 𝐼 = {1, 2}
2 rrx2linest2.e . . 3 𝐸 = (ℝ^‘𝐼)
3 rrx2linest2.p . . 3 𝑃 = (ℝ ↑m 𝐼)
4 rrx2linest2.l . . 3 𝐿 = (LineM𝐸)
5 rrx2linest2.b . . 3 𝐵 = ((𝑌‘1) − (𝑋‘1))
6 eqid 2737 . . 3 ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2))
7 rrx2linest2.c . . 3 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
81, 2, 3, 4, 5, 6, 7rrx2linest 48663 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)})
9 eqcom 2744 . . . 4 ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)))
101, 3rrx2pyel 48633 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
11103ad2ant2 1135 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
121, 3rrx2pyel 48633 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
13123ad2ant1 1134 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
1411, 13resubcld 11691 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
1514adantr 480 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
161, 3rrx2pxel 48632 . . . . . . . . 9 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
1716adantl 481 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℝ)
1815, 17remulcld 11291 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℝ)
1918recnd 11289 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ)
201, 3rrx2pxel 48632 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
21203ad2ant2 1135 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
2213, 21remulcld 11291 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
231, 3rrx2pxel 48632 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
24233ad2ant1 1134 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
2524, 11remulcld 11291 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
2622, 25resubcld 11691 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
277, 26eqeltrid 2845 . . . . . . . 8 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐶 ∈ ℝ)
2827adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐶 ∈ ℝ)
2928recnd 11289 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐶 ∈ ℂ)
3021, 24resubcld 11691 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
315, 30eqeltrid 2845 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐵 ∈ ℝ)
3231adantr 480 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐵 ∈ ℝ)
331, 3rrx2pyel 48633 . . . . . . . . 9 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3433adantl 481 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
3532, 34remulcld 11291 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℝ)
3635recnd 11289 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℂ)
3719, 29, 36addrsub 11680 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)) ↔ 𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))))
38 eqcom 2744 . . . . . 6 (𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) ↔ ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶)
39 rrx2linest2.a . . . . . . . . . . . . 13 𝐴 = ((𝑋‘2) − (𝑌‘2))
4013, 11resubcld 11691 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
4139, 40eqeltrid 2845 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐴 ∈ ℝ)
4241adantr 480 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐴 ∈ ℝ)
4342, 17remulcld 11291 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℝ)
4443recnd 11289 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ)
4544, 36addcomd 11463 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))))
4611adantr 480 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℝ)
4746recnd 11289 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
4813adantr 480 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
4948recnd 11289 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
5047, 49negsubdi2d 11636 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → -((𝑌‘2) − (𝑋‘2)) = ((𝑋‘2) − (𝑌‘2)))
5139, 50eqtr4id 2796 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐴 = -((𝑌‘2) − (𝑋‘2)))
5251oveq1d 7446 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5315recnd 11289 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
5417recnd 11289 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
5553, 54mulneg1d 11716 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5652, 55eqtrd 2777 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5756oveq2d 7447 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
5836, 19negsubd 11626 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
5945, 57, 583eqtrd 2781 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
6059eqeq1d 2739 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶))
6138, 60bitr4id 290 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
6237, 61bitrd 279 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
639, 62bitrid 283 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
6463rabbidva 3443 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)} = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
658, 64eqtrd 2777 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  {crab 3436  {cpr 4628  cfv 6561  (class class class)co 7431  m cmap 8866  cr 11154  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  -cneg 11493  2c2 12321  ℝ^crrx 25417  LineMcline 48648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-field 20732  df-staf 20840  df-srng 20841  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-cnfld 21365  df-refld 21623  df-dsmm 21752  df-frlm 21767  df-tng 24597  df-tcph 25203  df-rrx 25419  df-line 48650
This theorem is referenced by:  elrrx2linest2  48666  itsclinecirc0  48694  itscnhlinecirc02p  48706
  Copyright terms: Public domain W3C validator