Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linest2 Structured version   Visualization version   GIF version

Theorem rrx2linest2 46449
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in another "standard form" (usually with (𝑝‘1) = 𝑥 and (𝑝‘2) = 𝑦). (Contributed by AV, 23-Feb-2023.)
Hypotheses
Ref Expression
rrx2linest2.i 𝐼 = {1, 2}
rrx2linest2.e 𝐸 = (ℝ^‘𝐼)
rrx2linest2.p 𝑃 = (ℝ ↑m 𝐼)
rrx2linest2.l 𝐿 = (LineM𝐸)
rrx2linest2.a 𝐴 = ((𝑋‘2) − (𝑌‘2))
rrx2linest2.b 𝐵 = ((𝑌‘1) − (𝑋‘1))
rrx2linest2.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
rrx2linest2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝐶(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linest2
StepHypRef Expression
1 rrx2linest2.i . . 3 𝐼 = {1, 2}
2 rrx2linest2.e . . 3 𝐸 = (ℝ^‘𝐼)
3 rrx2linest2.p . . 3 𝑃 = (ℝ ↑m 𝐼)
4 rrx2linest2.l . . 3 𝐿 = (LineM𝐸)
5 rrx2linest2.b . . 3 𝐵 = ((𝑌‘1) − (𝑋‘1))
6 eqid 2736 . . 3 ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2))
7 rrx2linest2.c . . 3 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
81, 2, 3, 4, 5, 6, 7rrx2linest 46447 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)})
9 eqcom 2743 . . . 4 ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)))
101, 3rrx2pyel 46417 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
11103ad2ant2 1133 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
121, 3rrx2pyel 46417 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
13123ad2ant1 1132 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
1411, 13resubcld 11504 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
1514adantr 481 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
161, 3rrx2pxel 46416 . . . . . . . . 9 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
1716adantl 482 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℝ)
1815, 17remulcld 11106 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℝ)
1918recnd 11104 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ)
201, 3rrx2pxel 46416 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
21203ad2ant2 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
2213, 21remulcld 11106 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
231, 3rrx2pxel 46416 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
24233ad2ant1 1132 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
2524, 11remulcld 11106 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
2622, 25resubcld 11504 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
277, 26eqeltrid 2841 . . . . . . . 8 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐶 ∈ ℝ)
2827adantr 481 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐶 ∈ ℝ)
2928recnd 11104 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐶 ∈ ℂ)
3021, 24resubcld 11504 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
315, 30eqeltrid 2841 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐵 ∈ ℝ)
3231adantr 481 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐵 ∈ ℝ)
331, 3rrx2pyel 46417 . . . . . . . . 9 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3433adantl 482 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
3532, 34remulcld 11106 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℝ)
3635recnd 11104 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℂ)
3719, 29, 36addrsub 11493 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)) ↔ 𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))))
38 eqcom 2743 . . . . . 6 (𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) ↔ ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶)
39 rrx2linest2.a . . . . . . . . . . . . 13 𝐴 = ((𝑋‘2) − (𝑌‘2))
4013, 11resubcld 11504 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
4139, 40eqeltrid 2841 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐴 ∈ ℝ)
4241adantr 481 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐴 ∈ ℝ)
4342, 17remulcld 11106 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℝ)
4443recnd 11104 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ)
4544, 36addcomd 11278 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))))
4611adantr 481 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℝ)
4746recnd 11104 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
4813adantr 481 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
4948recnd 11104 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
5047, 49negsubdi2d 11449 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → -((𝑌‘2) − (𝑋‘2)) = ((𝑋‘2) − (𝑌‘2)))
5139, 50eqtr4id 2795 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐴 = -((𝑌‘2) − (𝑋‘2)))
5251oveq1d 7352 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5315recnd 11104 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
5417recnd 11104 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
5553, 54mulneg1d 11529 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5652, 55eqtrd 2776 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5756oveq2d 7353 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
5836, 19negsubd 11439 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
5945, 57, 583eqtrd 2780 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
6059eqeq1d 2738 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶))
6138, 60bitr4id 289 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
6237, 61bitrd 278 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
639, 62bitrid 282 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
6463rabbidva 3410 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)} = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
658, 64eqtrd 2776 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  {crab 3403  {cpr 4575  cfv 6479  (class class class)co 7337  m cmap 8686  cr 10971  1c1 10973   + caddc 10975   · cmul 10977  cmin 11306  -cneg 11307  2c2 12129  ℝ^crrx 24653  LineMcline 46432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-tpos 8112  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-map 8688  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-sup 9299  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-rp 12832  df-fz 13341  df-seq 13823  df-exp 13884  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-0g 17249  df-prds 17255  df-pws 17257  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-mhm 18527  df-grp 18676  df-minusg 18677  df-sbg 18678  df-subg 18848  df-ghm 18928  df-cmn 19483  df-mgp 19816  df-ur 19833  df-ring 19880  df-cring 19881  df-oppr 19957  df-dvdsr 19978  df-unit 19979  df-invr 20009  df-dvr 20020  df-rnghom 20054  df-drng 20095  df-field 20096  df-subrg 20127  df-staf 20211  df-srng 20212  df-lmod 20231  df-lss 20300  df-sra 20540  df-rgmod 20541  df-cnfld 20704  df-refld 20916  df-dsmm 21045  df-frlm 21060  df-tng 23846  df-tcph 24439  df-rrx 24655  df-line 46434
This theorem is referenced by:  elrrx2linest2  46450  itsclinecirc0  46478  itscnhlinecirc02p  46490
  Copyright terms: Public domain W3C validator