Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linest2 Structured version   Visualization version   GIF version

Theorem rrx2linest2 45151
 Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in another "standard form" (usually with (𝑝‘1) = 𝑥 and (𝑝‘2) = 𝑦). (Contributed by AV, 23-Feb-2023.)
Hypotheses
Ref Expression
rrx2linest2.i 𝐼 = {1, 2}
rrx2linest2.e 𝐸 = (ℝ^‘𝐼)
rrx2linest2.p 𝑃 = (ℝ ↑m 𝐼)
rrx2linest2.l 𝐿 = (LineM𝐸)
rrx2linest2.a 𝐴 = ((𝑋‘2) − (𝑌‘2))
rrx2linest2.b 𝐵 = ((𝑌‘1) − (𝑋‘1))
rrx2linest2.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
rrx2linest2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝐶(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linest2
StepHypRef Expression
1 rrx2linest2.i . . 3 𝐼 = {1, 2}
2 rrx2linest2.e . . 3 𝐸 = (ℝ^‘𝐼)
3 rrx2linest2.p . . 3 𝑃 = (ℝ ↑m 𝐼)
4 rrx2linest2.l . . 3 𝐿 = (LineM𝐸)
5 rrx2linest2.b . . 3 𝐵 = ((𝑌‘1) − (𝑋‘1))
6 eqid 2801 . . 3 ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2))
7 rrx2linest2.c . . 3 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
81, 2, 3, 4, 5, 6, 7rrx2linest 45149 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)})
9 eqcom 2808 . . . 4 ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)))
101, 3rrx2pyel 45119 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
11103ad2ant2 1131 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
121, 3rrx2pyel 45119 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
13123ad2ant1 1130 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
1411, 13resubcld 11061 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
1514adantr 484 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
161, 3rrx2pxel 45118 . . . . . . . . 9 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
1716adantl 485 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℝ)
1815, 17remulcld 10664 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℝ)
1918recnd 10662 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ)
201, 3rrx2pxel 45118 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
21203ad2ant2 1131 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
2213, 21remulcld 10664 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
231, 3rrx2pxel 45118 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
24233ad2ant1 1130 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
2524, 11remulcld 10664 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
2622, 25resubcld 11061 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
277, 26eqeltrid 2897 . . . . . . . 8 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐶 ∈ ℝ)
2827adantr 484 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐶 ∈ ℝ)
2928recnd 10662 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐶 ∈ ℂ)
3021, 24resubcld 11061 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
315, 30eqeltrid 2897 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐵 ∈ ℝ)
3231adantr 484 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐵 ∈ ℝ)
331, 3rrx2pyel 45119 . . . . . . . . 9 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3433adantl 485 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
3532, 34remulcld 10664 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℝ)
3635recnd 10662 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℂ)
3719, 29, 36addrsub 11050 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)) ↔ 𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))))
38 rrx2linest2.a . . . . . . . . . . . . 13 𝐴 = ((𝑋‘2) − (𝑌‘2))
3913, 11resubcld 11061 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
4038, 39eqeltrid 2897 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐴 ∈ ℝ)
4140adantr 484 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐴 ∈ ℝ)
4241, 17remulcld 10664 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℝ)
4342recnd 10662 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ)
4443, 36addcomd 10835 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))))
4511adantr 484 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℝ)
4645recnd 10662 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
4713adantr 484 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
4847recnd 10662 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
4946, 48negsubdi2d 11006 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → -((𝑌‘2) − (𝑋‘2)) = ((𝑋‘2) − (𝑌‘2)))
5038, 49eqtr4id 2855 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐴 = -((𝑌‘2) − (𝑋‘2)))
5150oveq1d 7154 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5215recnd 10662 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
5317recnd 10662 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
5452, 53mulneg1d 11086 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5551, 54eqtrd 2836 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5655oveq2d 7155 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
5736, 19negsubd 10996 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
5844, 56, 573eqtrd 2840 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
5958eqeq1d 2803 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶))
60 eqcom 2808 . . . . . 6 (𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) ↔ ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶)
6159, 60syl6rbbr 293 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
6237, 61bitrd 282 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
639, 62syl5bb 286 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
6463rabbidva 3428 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)} = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
658, 64eqtrd 2836 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  {crab 3113  {cpr 4530  ‘cfv 6328  (class class class)co 7139   ↑m cmap 8393  ℝcr 10529  1c1 10531   + caddc 10533   · cmul 10535   − cmin 10863  -cneg 10864  2c2 11684  ℝ^crrx 23991  LineMcline 45134 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12382  df-fz 12890  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-0g 16711  df-prds 16717  df-pws 16719  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-grp 18102  df-minusg 18103  df-sbg 18104  df-subg 18272  df-ghm 18352  df-cmn 18904  df-mgp 19237  df-ur 19249  df-ring 19296  df-cring 19297  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19501  df-field 19502  df-subrg 19530  df-staf 19613  df-srng 19614  df-lmod 19633  df-lss 19701  df-sra 19941  df-rgmod 19942  df-cnfld 20096  df-refld 20298  df-dsmm 20425  df-frlm 20440  df-tng 23195  df-tcph 23778  df-rrx 23993  df-line 45136 This theorem is referenced by:  elrrx2linest2  45152  itsclinecirc0  45180  itscnhlinecirc02p  45192
 Copyright terms: Public domain W3C validator