Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linest2 Structured version   Visualization version   GIF version

Theorem rrx2linest2 46820
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in another "standard form" (usually with (𝑝‘1) = 𝑥 and (𝑝‘2) = 𝑦). (Contributed by AV, 23-Feb-2023.)
Hypotheses
Ref Expression
rrx2linest2.i 𝐼 = {1, 2}
rrx2linest2.e 𝐸 = (ℝ^‘𝐼)
rrx2linest2.p 𝑃 = (ℝ ↑m 𝐼)
rrx2linest2.l 𝐿 = (LineM𝐸)
rrx2linest2.a 𝐴 = ((𝑋‘2) − (𝑌‘2))
rrx2linest2.b 𝐵 = ((𝑌‘1) − (𝑋‘1))
rrx2linest2.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
rrx2linest2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝐶(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linest2
StepHypRef Expression
1 rrx2linest2.i . . 3 𝐼 = {1, 2}
2 rrx2linest2.e . . 3 𝐸 = (ℝ^‘𝐼)
3 rrx2linest2.p . . 3 𝑃 = (ℝ ↑m 𝐼)
4 rrx2linest2.l . . 3 𝐿 = (LineM𝐸)
5 rrx2linest2.b . . 3 𝐵 = ((𝑌‘1) − (𝑋‘1))
6 eqid 2736 . . 3 ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2))
7 rrx2linest2.c . . 3 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
81, 2, 3, 4, 5, 6, 7rrx2linest 46818 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)})
9 eqcom 2743 . . . 4 ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)))
101, 3rrx2pyel 46788 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
11103ad2ant2 1134 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
121, 3rrx2pyel 46788 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
13123ad2ant1 1133 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
1411, 13resubcld 11583 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
1514adantr 481 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
161, 3rrx2pxel 46787 . . . . . . . . 9 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
1716adantl 482 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℝ)
1815, 17remulcld 11185 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℝ)
1918recnd 11183 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ)
201, 3rrx2pxel 46787 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
21203ad2ant2 1134 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
2213, 21remulcld 11185 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
231, 3rrx2pxel 46787 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
24233ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
2524, 11remulcld 11185 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
2622, 25resubcld 11583 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
277, 26eqeltrid 2842 . . . . . . . 8 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐶 ∈ ℝ)
2827adantr 481 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐶 ∈ ℝ)
2928recnd 11183 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐶 ∈ ℂ)
3021, 24resubcld 11583 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
315, 30eqeltrid 2842 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐵 ∈ ℝ)
3231adantr 481 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐵 ∈ ℝ)
331, 3rrx2pyel 46788 . . . . . . . . 9 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3433adantl 482 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
3532, 34remulcld 11185 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℝ)
3635recnd 11183 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℂ)
3719, 29, 36addrsub 11572 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)) ↔ 𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))))
38 eqcom 2743 . . . . . 6 (𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) ↔ ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶)
39 rrx2linest2.a . . . . . . . . . . . . 13 𝐴 = ((𝑋‘2) − (𝑌‘2))
4013, 11resubcld 11583 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
4139, 40eqeltrid 2842 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐴 ∈ ℝ)
4241adantr 481 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐴 ∈ ℝ)
4342, 17remulcld 11185 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℝ)
4443recnd 11183 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ)
4544, 36addcomd 11357 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))))
4611adantr 481 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℝ)
4746recnd 11183 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
4813adantr 481 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
4948recnd 11183 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
5047, 49negsubdi2d 11528 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → -((𝑌‘2) − (𝑋‘2)) = ((𝑋‘2) − (𝑌‘2)))
5139, 50eqtr4id 2795 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐴 = -((𝑌‘2) − (𝑋‘2)))
5251oveq1d 7372 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5315recnd 11183 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
5417recnd 11183 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
5553, 54mulneg1d 11608 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5652, 55eqtrd 2776 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5756oveq2d 7373 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
5836, 19negsubd 11518 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
5945, 57, 583eqtrd 2780 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
6059eqeq1d 2738 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶))
6138, 60bitr4id 289 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
6237, 61bitrd 278 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
639, 62bitrid 282 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
6463rabbidva 3414 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)} = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
658, 64eqtrd 2776 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  {crab 3407  {cpr 4588  cfv 6496  (class class class)co 7357  m cmap 8765  cr 11050  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386  2c2 12208  ℝ^crrx 24747  LineMcline 46803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-staf 20304  df-srng 20305  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-cnfld 20797  df-refld 21009  df-dsmm 21138  df-frlm 21153  df-tng 23940  df-tcph 24533  df-rrx 24749  df-line 46805
This theorem is referenced by:  elrrx2linest2  46821  itsclinecirc0  46849  itscnhlinecirc02p  46861
  Copyright terms: Public domain W3C validator