Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linest2 Structured version   Visualization version   GIF version

Theorem rrx2linest2 48165
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in another "standard form" (usually with (𝑝‘1) = 𝑥 and (𝑝‘2) = 𝑦). (Contributed by AV, 23-Feb-2023.)
Hypotheses
Ref Expression
rrx2linest2.i 𝐼 = {1, 2}
rrx2linest2.e 𝐸 = (ℝ^‘𝐼)
rrx2linest2.p 𝑃 = (ℝ ↑m 𝐼)
rrx2linest2.l 𝐿 = (LineM𝐸)
rrx2linest2.a 𝐴 = ((𝑋‘2) − (𝑌‘2))
rrx2linest2.b 𝐵 = ((𝑌‘1) − (𝑋‘1))
rrx2linest2.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
rrx2linest2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝐶(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linest2
StepHypRef Expression
1 rrx2linest2.i . . 3 𝐼 = {1, 2}
2 rrx2linest2.e . . 3 𝐸 = (ℝ^‘𝐼)
3 rrx2linest2.p . . 3 𝑃 = (ℝ ↑m 𝐼)
4 rrx2linest2.l . . 3 𝐿 = (LineM𝐸)
5 rrx2linest2.b . . 3 𝐵 = ((𝑌‘1) − (𝑋‘1))
6 eqid 2726 . . 3 ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2))
7 rrx2linest2.c . . 3 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
81, 2, 3, 4, 5, 6, 7rrx2linest 48163 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)})
9 eqcom 2733 . . . 4 ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)))
101, 3rrx2pyel 48133 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
11103ad2ant2 1131 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
121, 3rrx2pyel 48133 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
13123ad2ant1 1130 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
1411, 13resubcld 11680 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
1514adantr 479 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℝ)
161, 3rrx2pxel 48132 . . . . . . . . 9 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
1716adantl 480 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℝ)
1815, 17remulcld 11282 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℝ)
1918recnd 11280 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ)
201, 3rrx2pxel 48132 . . . . . . . . . . . 12 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
21203ad2ant2 1131 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
2213, 21remulcld 11282 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
231, 3rrx2pxel 48132 . . . . . . . . . . . 12 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
24233ad2ant1 1130 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
2524, 11remulcld 11282 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
2622, 25resubcld 11680 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
277, 26eqeltrid 2830 . . . . . . . 8 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐶 ∈ ℝ)
2827adantr 479 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐶 ∈ ℝ)
2928recnd 11280 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐶 ∈ ℂ)
3021, 24resubcld 11680 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
315, 30eqeltrid 2830 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐵 ∈ ℝ)
3231adantr 479 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐵 ∈ ℝ)
331, 3rrx2pyel 48133 . . . . . . . . 9 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
3433adantl 480 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
3532, 34remulcld 11282 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℝ)
3635recnd 11280 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℂ)
3719, 29, 36addrsub 11669 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)) ↔ 𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))))
38 eqcom 2733 . . . . . 6 (𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) ↔ ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶)
39 rrx2linest2.a . . . . . . . . . . . . 13 𝐴 = ((𝑋‘2) − (𝑌‘2))
4013, 11resubcld 11680 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
4139, 40eqeltrid 2830 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐴 ∈ ℝ)
4241adantr 479 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐴 ∈ ℝ)
4342, 17remulcld 11282 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℝ)
4443recnd 11280 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ)
4544, 36addcomd 11454 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))))
4611adantr 479 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℝ)
4746recnd 11280 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
4813adantr 479 . . . . . . . . . . . . . 14 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
4948recnd 11280 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
5047, 49negsubdi2d 11625 . . . . . . . . . . . 12 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → -((𝑌‘2) − (𝑋‘2)) = ((𝑋‘2) − (𝑌‘2)))
5139, 50eqtr4id 2785 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → 𝐴 = -((𝑌‘2) − (𝑋‘2)))
5251oveq1d 7428 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5315recnd 11280 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
5417recnd 11280 . . . . . . . . . . 11 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
5553, 54mulneg1d 11705 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (-((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5652, 55eqtrd 2766 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
5756oveq2d 7429 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + (𝐴 · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
5836, 19negsubd 11615 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) + -(((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
5945, 57, 583eqtrd 2770 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))))
6059eqeq1d 2728 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) = 𝐶))
6138, 60bitr4id 289 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (𝐶 = ((𝐵 · (𝑝‘2)) − (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
6237, 61bitrd 278 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) = (𝐵 · (𝑝‘2)) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
639, 62bitrid 282 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → ((𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶) ↔ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶))
6463rabbidva 3426 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → {𝑝𝑃 ∣ (𝐵 · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + 𝐶)} = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
658, 64eqtrd 2766 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  {crab 3419  {cpr 4625  cfv 6543  (class class class)co 7413  m cmap 8844  cr 11145  1c1 11147   + caddc 11149   · cmul 11151  cmin 11482  -cneg 11483  2c2 12310  ℝ^crrx 25396  LineMcline 48148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225  ax-mulf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7866  df-1st 7992  df-2nd 7993  df-supp 8164  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-map 8846  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-fsupp 9396  df-sup 9475  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12256  df-2 12318  df-3 12319  df-4 12320  df-5 12321  df-6 12322  df-7 12323  df-8 12324  df-9 12325  df-n0 12516  df-z 12602  df-dec 12721  df-uz 12866  df-rp 13020  df-fz 13530  df-seq 14013  df-exp 14073  df-cj 15096  df-re 15097  df-im 15098  df-sqrt 15232  df-abs 15233  df-struct 17141  df-sets 17158  df-slot 17176  df-ndx 17188  df-base 17206  df-ress 17235  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-0g 17448  df-prds 17454  df-pws 17456  df-mgm 18625  df-sgrp 18704  df-mnd 18720  df-mhm 18765  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-ghm 19200  df-cmn 19773  df-abl 19774  df-mgp 20111  df-rng 20129  df-ur 20158  df-ring 20211  df-cring 20212  df-oppr 20309  df-dvdsr 20332  df-unit 20333  df-invr 20363  df-dvr 20376  df-rhm 20447  df-subrng 20521  df-subrg 20546  df-drng 20702  df-field 20703  df-staf 20811  df-srng 20812  df-lmod 20831  df-lss 20902  df-sra 21144  df-rgmod 21145  df-cnfld 21337  df-refld 21594  df-dsmm 21723  df-frlm 21738  df-tng 24578  df-tcph 25182  df-rrx 25398  df-line 48150
This theorem is referenced by:  elrrx2linest2  48166  itsclinecirc0  48194  itscnhlinecirc02p  48206
  Copyright terms: Public domain W3C validator