Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclinecirc0in Structured version   Visualization version   GIF version

Theorem itsclinecirc0in 46009
Description: The intersection points of a line through two different points and a circle around the origin, using the definition of a line in a two dimensional Euclidean space, expressed as intersection. (Contributed by AV, 7-May-2023.) (Revised by AV, 14-May-2023.)
Hypotheses
Ref Expression
itsclinecirc0b.i 𝐼 = {1, 2}
itsclinecirc0b.e 𝐸 = (ℝ^‘𝐼)
itsclinecirc0b.p 𝑃 = (ℝ ↑m 𝐼)
itsclinecirc0b.s 𝑆 = (Sphere‘𝐸)
itsclinecirc0b.0 0 = (𝐼 × {0})
itsclinecirc0b.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclinecirc0b.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
itsclinecirc0b.l 𝐿 = (LineM𝐸)
itsclinecirc0b.a 𝐴 = ((𝑋‘2) − (𝑌‘2))
itsclinecirc0b.b 𝐵 = ((𝑌‘1) − (𝑋‘1))
itsclinecirc0b.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
itsclinecirc0in (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}})

Proof of Theorem itsclinecirc0in
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elin 3899 . . . 4 (𝑧 ∈ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ (𝑧 ∈ ( 0 𝑆𝑅) ∧ 𝑧 ∈ (𝑋𝐿𝑌)))
2 itsclinecirc0b.i . . . . 5 𝐼 = {1, 2}
3 itsclinecirc0b.e . . . . 5 𝐸 = (ℝ^‘𝐼)
4 itsclinecirc0b.p . . . . 5 𝑃 = (ℝ ↑m 𝐼)
5 itsclinecirc0b.s . . . . 5 𝑆 = (Sphere‘𝐸)
6 itsclinecirc0b.0 . . . . 5 0 = (𝐼 × {0})
7 itsclinecirc0b.q . . . . 5 𝑄 = ((𝐴↑2) + (𝐵↑2))
8 itsclinecirc0b.d . . . . 5 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
9 itsclinecirc0b.l . . . . 5 𝐿 = (LineM𝐸)
10 itsclinecirc0b.a . . . . 5 𝐴 = ((𝑋‘2) − (𝑌‘2))
11 itsclinecirc0b.b . . . . 5 𝐵 = ((𝑌‘1) − (𝑋‘1))
12 itsclinecirc0b.c . . . . 5 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
132, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12itsclinecirc0b 46008 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑧 ∈ ( 0 𝑆𝑅) ∧ 𝑧 ∈ (𝑋𝐿𝑌)) ↔ (𝑧𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
141, 13syl5bb 282 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑧 ∈ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ (𝑧𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
152, 4rrx2pyel 45946 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
1615adantr 480 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℝ)
172, 4rrx2pyel 45946 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
1817adantl 481 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℝ)
1916, 18resubcld 11333 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
2010, 19eqeltrid 2843 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → 𝐴 ∈ ℝ)
21203adant3 1130 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐴 ∈ ℝ)
2221adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐴 ∈ ℝ)
232, 4rrx2pxel 45945 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
2423adantl 481 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → (𝑌‘1) ∈ ℝ)
252, 4rrx2pxel 45945 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
2625adantr 480 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → (𝑋‘1) ∈ ℝ)
2724, 26resubcld 11333 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
2811, 27eqeltrid 2843 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → 𝐵 ∈ ℝ)
29283adant3 1130 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐵 ∈ ℝ)
3029adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐵 ∈ ℝ)
3116, 24remulcld 10936 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
3226, 18remulcld 10936 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
3331, 32resubcld 11333 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
3412, 33eqeltrid 2843 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → 𝐶 ∈ ℝ)
35343adant3 1130 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐶 ∈ ℝ)
3635adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐶 ∈ ℝ)
3722, 30, 363jca 1126 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
3821, 29, 353jca 1126 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
39 rpre 12667 . . . . . . . 8 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
4039adantr 480 . . . . . . 7 ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) → 𝑅 ∈ ℝ)
417, 8itsclc0lem3 45992 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
4238, 40, 41syl2an 595 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐷 ∈ ℝ)
43 simprr 769 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 0 ≤ 𝐷)
4442, 43jca 511 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))
4520, 28jca 511 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
467resum2sqcl 45940 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈ ℝ)
4745, 46syl 17 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → 𝑄 ∈ ℝ)
48473adant3 1130 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑄 ∈ ℝ)
492, 4, 11, 10rrx2pnedifcoorneorr 45951 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0))
5049orcomd 867 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
517resum2sqorgt0 45943 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄)
5221, 29, 50, 51syl3anc 1369 . . . . . . . 8 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 0 < 𝑄)
5352gt0ne0d 11469 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑄 ≠ 0)
5448, 53jca 511 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0))
5554adantr 480 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0))
56 itsclc0lem1 45990 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
5737, 44, 55, 56syl3anc 1369 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
5830, 22, 363jca 1126 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ))
5948adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝑄 ∈ ℝ)
6053adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝑄 ≠ 0)
6159, 60jca 511 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0))
62 itsclc0lem2 45991 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
6358, 44, 61, 62syl3anc 1369 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
64 itsclc0lem2 45991 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
6537, 44, 61, 64syl3anc 1369 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
66 itsclc0lem1 45990 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
6758, 44, 61, 66syl3anc 1369 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
682, 4prelrrx2b 45948 . . . 4 ((((((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ) ∧ ((((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)) → ((𝑧𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) ↔ 𝑧 ∈ {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}}))
6957, 63, 65, 67, 68syl22anc 835 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑧𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) ↔ 𝑧 ∈ {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}}))
7014, 69bitrd 278 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑧 ∈ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ 𝑧 ∈ {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}}))
7170eqrdv 2736 1 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cin 3882  {csn 4558  {cpr 4560  cop 4564   class class class wbr 5070   × cxp 5578  cfv 6418  (class class class)co 7255  m cmap 8573  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  +crp 12659  cexp 13710  csqrt 14872  ℝ^crrx 24452  LineMcline 45961  Spherecsph 45962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-xmet 20503  df-met 20504  df-cnfld 20511  df-refld 20722  df-dsmm 20849  df-frlm 20864  df-nm 23644  df-tng 23646  df-tcph 24238  df-rrx 24454  df-ehl 24455  df-line 45963  df-sph 45964
This theorem is referenced by:  inlinecirc02plem  46020
  Copyright terms: Public domain W3C validator