Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclinecirc0in Structured version   Visualization version   GIF version

Theorem itsclinecirc0in 47649
Description: The intersection points of a line through two different points and a circle around the origin, using the definition of a line in a two dimensional Euclidean space, expressed as intersection. (Contributed by AV, 7-May-2023.) (Revised by AV, 14-May-2023.)
Hypotheses
Ref Expression
itsclinecirc0b.i 𝐼 = {1, 2}
itsclinecirc0b.e 𝐸 = (ℝ^‘𝐼)
itsclinecirc0b.p 𝑃 = (ℝ ↑m 𝐼)
itsclinecirc0b.s 𝑆 = (Sphere‘𝐸)
itsclinecirc0b.0 0 = (𝐼 × {0})
itsclinecirc0b.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclinecirc0b.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
itsclinecirc0b.l 𝐿 = (LineM𝐸)
itsclinecirc0b.a 𝐴 = ((𝑋‘2) − (𝑌‘2))
itsclinecirc0b.b 𝐵 = ((𝑌‘1) − (𝑋‘1))
itsclinecirc0b.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
itsclinecirc0in (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}})

Proof of Theorem itsclinecirc0in
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elin 3956 . . . 4 (𝑧 ∈ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ (𝑧 ∈ ( 0 𝑆𝑅) ∧ 𝑧 ∈ (𝑋𝐿𝑌)))
2 itsclinecirc0b.i . . . . 5 𝐼 = {1, 2}
3 itsclinecirc0b.e . . . . 5 𝐸 = (ℝ^‘𝐼)
4 itsclinecirc0b.p . . . . 5 𝑃 = (ℝ ↑m 𝐼)
5 itsclinecirc0b.s . . . . 5 𝑆 = (Sphere‘𝐸)
6 itsclinecirc0b.0 . . . . 5 0 = (𝐼 × {0})
7 itsclinecirc0b.q . . . . 5 𝑄 = ((𝐴↑2) + (𝐵↑2))
8 itsclinecirc0b.d . . . . 5 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
9 itsclinecirc0b.l . . . . 5 𝐿 = (LineM𝐸)
10 itsclinecirc0b.a . . . . 5 𝐴 = ((𝑋‘2) − (𝑌‘2))
11 itsclinecirc0b.b . . . . 5 𝐵 = ((𝑌‘1) − (𝑋‘1))
12 itsclinecirc0b.c . . . . 5 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
132, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12itsclinecirc0b 47648 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑧 ∈ ( 0 𝑆𝑅) ∧ 𝑧 ∈ (𝑋𝐿𝑌)) ↔ (𝑧𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
141, 13bitrid 283 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑧 ∈ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ (𝑧𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
152, 4rrx2pyel 47586 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
1615adantr 480 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℝ)
172, 4rrx2pyel 47586 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
1817adantl 481 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℝ)
1916, 18resubcld 11639 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
2010, 19eqeltrid 2829 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → 𝐴 ∈ ℝ)
21203adant3 1129 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐴 ∈ ℝ)
2221adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐴 ∈ ℝ)
232, 4rrx2pxel 47585 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
2423adantl 481 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → (𝑌‘1) ∈ ℝ)
252, 4rrx2pxel 47585 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
2625adantr 480 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → (𝑋‘1) ∈ ℝ)
2724, 26resubcld 11639 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
2811, 27eqeltrid 2829 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → 𝐵 ∈ ℝ)
29283adant3 1129 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐵 ∈ ℝ)
3029adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐵 ∈ ℝ)
3116, 24remulcld 11241 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
3226, 18remulcld 11241 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
3331, 32resubcld 11639 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
3412, 33eqeltrid 2829 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → 𝐶 ∈ ℝ)
35343adant3 1129 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐶 ∈ ℝ)
3635adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐶 ∈ ℝ)
3722, 30, 363jca 1125 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
3821, 29, 353jca 1125 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
39 rpre 12979 . . . . . . . 8 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
4039adantr 480 . . . . . . 7 ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) → 𝑅 ∈ ℝ)
417, 8itsclc0lem3 47632 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
4238, 40, 41syl2an 595 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐷 ∈ ℝ)
43 simprr 770 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 0 ≤ 𝐷)
4442, 43jca 511 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))
4520, 28jca 511 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
467resum2sqcl 47580 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈ ℝ)
4745, 46syl 17 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → 𝑄 ∈ ℝ)
48473adant3 1129 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑄 ∈ ℝ)
492, 4, 11, 10rrx2pnedifcoorneorr 47591 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0))
5049orcomd 868 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
517resum2sqorgt0 47583 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄)
5221, 29, 50, 51syl3anc 1368 . . . . . . . 8 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 0 < 𝑄)
5352gt0ne0d 11775 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑄 ≠ 0)
5448, 53jca 511 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0))
5554adantr 480 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0))
56 itsclc0lem1 47630 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
5737, 44, 55, 56syl3anc 1368 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
5830, 22, 363jca 1125 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ))
5948adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝑄 ∈ ℝ)
6053adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝑄 ≠ 0)
6159, 60jca 511 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0))
62 itsclc0lem2 47631 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
6358, 44, 61, 62syl3anc 1368 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
64 itsclc0lem2 47631 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
6537, 44, 61, 64syl3anc 1368 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
66 itsclc0lem1 47630 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
6758, 44, 61, 66syl3anc 1368 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
682, 4prelrrx2b 47588 . . . 4 ((((((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ) ∧ ((((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)) → ((𝑧𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) ↔ 𝑧 ∈ {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}}))
6957, 63, 65, 67, 68syl22anc 836 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑧𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) ↔ 𝑧 ∈ {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}}))
7014, 69bitrd 279 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑧 ∈ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ 𝑧 ∈ {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}}))
7170eqrdv 2722 1 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  wne 2932  cin 3939  {csn 4620  {cpr 4622  cop 4626   class class class wbr 5138   × cxp 5664  cfv 6533  (class class class)co 7401  m cmap 8816  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111   < clt 11245  cle 11246  cmin 11441   / cdiv 11868  2c2 12264  +crp 12971  cexp 14024  csqrt 15177  ℝ^crrx 25233  LineMcline 47601  Spherecsph 47602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-sum 15630  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17386  df-gsum 17387  df-prds 17392  df-pws 17394  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-mhm 18703  df-grp 18856  df-minusg 18857  df-sbg 18858  df-subg 19040  df-ghm 19129  df-cntz 19223  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-cring 20131  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-dvr 20293  df-rhm 20364  df-subrng 20436  df-subrg 20461  df-drng 20579  df-field 20580  df-staf 20678  df-srng 20679  df-lmod 20698  df-lss 20769  df-sra 21011  df-rgmod 21012  df-xmet 21221  df-met 21222  df-cnfld 21229  df-refld 21466  df-dsmm 21595  df-frlm 21610  df-nm 24413  df-tng 24415  df-tcph 25019  df-rrx 25235  df-ehl 25236  df-line 47603  df-sph 47604
This theorem is referenced by:  inlinecirc02plem  47660
  Copyright terms: Public domain W3C validator