Step | Hyp | Ref
| Expression |
1 | | elin 3899 |
. . . 4
⊢ (𝑧 ∈ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ (𝑧 ∈ ( 0 𝑆𝑅) ∧ 𝑧 ∈ (𝑋𝐿𝑌))) |
2 | | itsclinecirc0b.i |
. . . . 5
⊢ 𝐼 = {1, 2} |
3 | | itsclinecirc0b.e |
. . . . 5
⊢ 𝐸 = (ℝ^‘𝐼) |
4 | | itsclinecirc0b.p |
. . . . 5
⊢ 𝑃 = (ℝ ↑m
𝐼) |
5 | | itsclinecirc0b.s |
. . . . 5
⊢ 𝑆 = (Sphere‘𝐸) |
6 | | itsclinecirc0b.0 |
. . . . 5
⊢ 0 = (𝐼 × {0}) |
7 | | itsclinecirc0b.q |
. . . . 5
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) |
8 | | itsclinecirc0b.d |
. . . . 5
⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) |
9 | | itsclinecirc0b.l |
. . . . 5
⊢ 𝐿 = (LineM‘𝐸) |
10 | | itsclinecirc0b.a |
. . . . 5
⊢ 𝐴 = ((𝑋‘2) − (𝑌‘2)) |
11 | | itsclinecirc0b.b |
. . . . 5
⊢ 𝐵 = ((𝑌‘1) − (𝑋‘1)) |
12 | | itsclinecirc0b.c |
. . . . 5
⊢ 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) |
13 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | itsclinecirc0b 46008 |
. . . 4
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑧 ∈ ( 0 𝑆𝑅) ∧ 𝑧 ∈ (𝑋𝐿𝑌)) ↔ (𝑧 ∈ 𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))) |
14 | 1, 13 | syl5bb 282 |
. . 3
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑧 ∈ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ (𝑧 ∈ 𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))) |
15 | 2, 4 | rrx2pyel 45946 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
16 | 15 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋‘2) ∈ ℝ) |
17 | 2, 4 | rrx2pyel 45946 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
18 | 17 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑌‘2) ∈ ℝ) |
19 | 16, 18 | resubcld 11333 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ) |
20 | 10, 19 | eqeltrid 2843 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐴 ∈ ℝ) |
21 | 20 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ ℝ) |
22 | 21 | adantr 480 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐴 ∈
ℝ) |
23 | 2, 4 | rrx2pxel 45945 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) |
24 | 23 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑌‘1) ∈ ℝ) |
25 | 2, 4 | rrx2pxel 45945 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
26 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋‘1) ∈ ℝ) |
27 | 24, 26 | resubcld 11333 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ) |
28 | 11, 27 | eqeltrid 2843 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐵 ∈ ℝ) |
29 | 28 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝐵 ∈ ℝ) |
30 | 29 | adantr 480 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐵 ∈
ℝ) |
31 | 16, 24 | remulcld 10936 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ) |
32 | 26, 18 | remulcld 10936 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ) |
33 | 31, 32 | resubcld 11333 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ) |
34 | 12, 33 | eqeltrid 2843 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐶 ∈ ℝ) |
35 | 34 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝐶 ∈ ℝ) |
36 | 35 | adantr 480 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐶 ∈
ℝ) |
37 | 22, 30, 36 | 3jca 1126 |
. . . . 5
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈
ℝ)) |
38 | 21, 29, 35 | 3jca 1126 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) |
39 | | rpre 12667 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℝ) |
40 | 39 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) →
𝑅 ∈
ℝ) |
41 | 7, 8 | itsclc0lem3 45992 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → 𝐷 ∈
ℝ) |
42 | 38, 40, 41 | syl2an 595 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐷 ∈
ℝ) |
43 | | simprr 769 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 0 ≤ 𝐷) |
44 | 42, 43 | jca 511 |
. . . . 5
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐷 ∈ ℝ ∧ 0 ≤
𝐷)) |
45 | 20, 28 | jca 511 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
46 | 7 | resum2sqcl 45940 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈
ℝ) |
47 | 45, 46 | syl 17 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑄 ∈ ℝ) |
48 | 47 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑄 ∈ ℝ) |
49 | 2, 4, 11, 10 | rrx2pnedifcoorneorr 45951 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0)) |
50 | 49 | orcomd 867 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
51 | 7 | resum2sqorgt0 45943 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄) |
52 | 21, 29, 50, 51 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 0 < 𝑄) |
53 | 52 | gt0ne0d 11469 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑄 ≠ 0) |
54 | 48, 53 | jca 511 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) |
55 | 54 | adantr 480 |
. . . . 5
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) |
56 | | itsclc0lem1 45990 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤
𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ) |
57 | 37, 44, 55, 56 | syl3anc 1369 |
. . . 4
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ) |
58 | 30, 22, 36 | 3jca 1126 |
. . . . 5
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈
ℝ)) |
59 | 48 | adantr 480 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑄 ∈
ℝ) |
60 | 53 | adantr 480 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑄 ≠ 0) |
61 | 59, 60 | jca 511 |
. . . . 5
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) |
62 | | itsclc0lem2 45991 |
. . . . 5
⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤
𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ) |
63 | 58, 44, 61, 62 | syl3anc 1369 |
. . . 4
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ) |
64 | | itsclc0lem2 45991 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤
𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ) |
65 | 37, 44, 61, 64 | syl3anc 1369 |
. . . 4
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ) |
66 | | itsclc0lem1 45990 |
. . . . 5
⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤
𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ) |
67 | 58, 44, 61, 66 | syl3anc 1369 |
. . . 4
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ) |
68 | 2, 4 | prelrrx2b 45948 |
. . . 4
⊢
((((((𝐴 ·
𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ) ∧ ((((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)) → ((𝑧 ∈ 𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) ↔ 𝑧 ∈ {{〈1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)〉, 〈2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)〉}, {〈1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)〉, 〈2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)〉}})) |
69 | 57, 63, 65, 67, 68 | syl22anc 835 |
. . 3
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑧 ∈ 𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) ↔ 𝑧 ∈ {{〈1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)〉, 〈2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)〉}, {〈1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)〉, 〈2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)〉}})) |
70 | 14, 69 | bitrd 278 |
. 2
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑧 ∈ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ 𝑧 ∈ {{〈1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)〉, 〈2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)〉}, {〈1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)〉, 〈2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)〉}})) |
71 | 70 | eqrdv 2736 |
1
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{〈1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)〉, 〈2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)〉}, {〈1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)〉, 〈2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)〉}}) |