Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclinecirc0in Structured version   Visualization version   GIF version

Theorem itsclinecirc0in 48625
Description: The intersection points of a line through two different points and a circle around the origin, using the definition of a line in a two dimensional Euclidean space, expressed as intersection. (Contributed by AV, 7-May-2023.) (Revised by AV, 14-May-2023.)
Hypotheses
Ref Expression
itsclinecirc0b.i 𝐼 = {1, 2}
itsclinecirc0b.e 𝐸 = (ℝ^‘𝐼)
itsclinecirc0b.p 𝑃 = (ℝ ↑m 𝐼)
itsclinecirc0b.s 𝑆 = (Sphere‘𝐸)
itsclinecirc0b.0 0 = (𝐼 × {0})
itsclinecirc0b.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclinecirc0b.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
itsclinecirc0b.l 𝐿 = (LineM𝐸)
itsclinecirc0b.a 𝐴 = ((𝑋‘2) − (𝑌‘2))
itsclinecirc0b.b 𝐵 = ((𝑌‘1) − (𝑋‘1))
itsclinecirc0b.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
itsclinecirc0in (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}})

Proof of Theorem itsclinecirc0in
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elin 3979 . . . 4 (𝑧 ∈ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ (𝑧 ∈ ( 0 𝑆𝑅) ∧ 𝑧 ∈ (𝑋𝐿𝑌)))
2 itsclinecirc0b.i . . . . 5 𝐼 = {1, 2}
3 itsclinecirc0b.e . . . . 5 𝐸 = (ℝ^‘𝐼)
4 itsclinecirc0b.p . . . . 5 𝑃 = (ℝ ↑m 𝐼)
5 itsclinecirc0b.s . . . . 5 𝑆 = (Sphere‘𝐸)
6 itsclinecirc0b.0 . . . . 5 0 = (𝐼 × {0})
7 itsclinecirc0b.q . . . . 5 𝑄 = ((𝐴↑2) + (𝐵↑2))
8 itsclinecirc0b.d . . . . 5 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
9 itsclinecirc0b.l . . . . 5 𝐿 = (LineM𝐸)
10 itsclinecirc0b.a . . . . 5 𝐴 = ((𝑋‘2) − (𝑌‘2))
11 itsclinecirc0b.b . . . . 5 𝐵 = ((𝑌‘1) − (𝑋‘1))
12 itsclinecirc0b.c . . . . 5 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
132, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12itsclinecirc0b 48624 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑧 ∈ ( 0 𝑆𝑅) ∧ 𝑧 ∈ (𝑋𝐿𝑌)) ↔ (𝑧𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
141, 13bitrid 283 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑧 ∈ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ (𝑧𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
152, 4rrx2pyel 48562 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
1615adantr 480 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℝ)
172, 4rrx2pyel 48562 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
1817adantl 481 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℝ)
1916, 18resubcld 11689 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
2010, 19eqeltrid 2843 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → 𝐴 ∈ ℝ)
21203adant3 1131 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐴 ∈ ℝ)
2221adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐴 ∈ ℝ)
232, 4rrx2pxel 48561 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
2423adantl 481 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → (𝑌‘1) ∈ ℝ)
252, 4rrx2pxel 48561 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
2625adantr 480 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → (𝑋‘1) ∈ ℝ)
2724, 26resubcld 11689 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
2811, 27eqeltrid 2843 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → 𝐵 ∈ ℝ)
29283adant3 1131 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐵 ∈ ℝ)
3029adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐵 ∈ ℝ)
3116, 24remulcld 11289 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
3226, 18remulcld 11289 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
3331, 32resubcld 11689 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
3412, 33eqeltrid 2843 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → 𝐶 ∈ ℝ)
35343adant3 1131 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐶 ∈ ℝ)
3635adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐶 ∈ ℝ)
3722, 30, 363jca 1127 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
3821, 29, 353jca 1127 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
39 rpre 13041 . . . . . . . 8 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
4039adantr 480 . . . . . . 7 ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) → 𝑅 ∈ ℝ)
417, 8itsclc0lem3 48608 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
4238, 40, 41syl2an 596 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝐷 ∈ ℝ)
43 simprr 773 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 0 ≤ 𝐷)
4442, 43jca 511 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))
4520, 28jca 511 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
467resum2sqcl 48556 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈ ℝ)
4745, 46syl 17 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → 𝑄 ∈ ℝ)
48473adant3 1131 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑄 ∈ ℝ)
492, 4, 11, 10rrx2pnedifcoorneorr 48567 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0))
5049orcomd 871 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
517resum2sqorgt0 48559 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄)
5221, 29, 50, 51syl3anc 1370 . . . . . . . 8 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 0 < 𝑄)
5352gt0ne0d 11825 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑄 ≠ 0)
5448, 53jca 511 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0))
5554adantr 480 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0))
56 itsclc0lem1 48606 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
5737, 44, 55, 56syl3anc 1370 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
5830, 22, 363jca 1127 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ))
5948adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝑄 ∈ ℝ)
6053adantr 480 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝑄 ≠ 0)
6159, 60jca 511 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0))
62 itsclc0lem2 48607 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
6358, 44, 61, 62syl3anc 1370 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
64 itsclc0lem2 48607 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
6537, 44, 61, 64syl3anc 1370 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
66 itsclc0lem1 48606 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
6758, 44, 61, 66syl3anc 1370 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
682, 4prelrrx2b 48564 . . . 4 ((((((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ) ∧ ((((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)) → ((𝑧𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) ↔ 𝑧 ∈ {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}}))
6957, 63, 65, 67, 68syl22anc 839 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑧𝑃 ∧ (((𝑧‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑧‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑧‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) ↔ 𝑧 ∈ {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}}))
7014, 69bitrd 279 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑧 ∈ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ 𝑧 ∈ {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}}))
7170eqrdv 2733 1 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cin 3962  {csn 4631  {cpr 4633  cop 4637   class class class wbr 5148   × cxp 5687  cfv 6563  (class class class)co 7431  m cmap 8865  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  +crp 13032  cexp 14099  csqrt 15269  ℝ^crrx 25431  LineMcline 48577  Spherecsph 48578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-xmet 21375  df-met 21376  df-cnfld 21383  df-refld 21641  df-dsmm 21770  df-frlm 21785  df-nm 24611  df-tng 24613  df-tcph 25217  df-rrx 25433  df-ehl 25434  df-line 48579  df-sph 48580
This theorem is referenced by:  inlinecirc02plem  48636
  Copyright terms: Public domain W3C validator