Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pnedifcoorneorr | Structured version Visualization version GIF version |
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.) |
Ref | Expression |
---|---|
rrx2pnecoorneor.i | ⊢ 𝐼 = {1, 2} |
rrx2pnecoorneor.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
rrx2pnedifcoorneor.a | ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) |
rrx2pnedifcoorneorr.b | ⊢ 𝐵 = ((𝑋‘2) − (𝑌‘2)) |
Ref | Expression |
---|---|
rrx2pnedifcoorneorr | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrx2pnecoorneor.i | . . 3 ⊢ 𝐼 = {1, 2} | |
2 | rrx2pnecoorneor.b | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
3 | rrx2pnedifcoorneor.a | . . 3 ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) | |
4 | eqid 2738 | . . 3 ⊢ ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2)) | |
5 | 1, 2, 3, 4 | rrx2pnedifcoorneor 45950 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0)) |
6 | eqcom 2745 | . . . . . . 7 ⊢ ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2)) | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2))) |
8 | 1, 2 | rrx2pyel 45946 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
9 | 8 | recnd 10934 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℂ) |
10 | 1, 2 | rrx2pyel 45946 | . . . . . . . . . . 11 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
11 | 10 | recnd 10934 | . . . . . . . . . 10 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℂ) |
12 | 9, 11 | anim12i 612 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ)) |
13 | 12 | ancomd 461 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ)) |
14 | 13 | 3adant3 1130 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ)) |
15 | subeq0 11177 | . . . . . . 7 ⊢ (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) | |
16 | 14, 15 | syl 17 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) |
17 | 12 | 3adant3 1130 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ)) |
18 | subeq0 11177 | . . . . . . 7 ⊢ (((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2))) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2))) |
20 | 7, 16, 19 | 3bitr4d 310 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ ((𝑋‘2) − (𝑌‘2)) = 0)) |
21 | rrx2pnedifcoorneorr.b | . . . . . . 7 ⊢ 𝐵 = ((𝑋‘2) − (𝑌‘2)) | |
22 | 21 | eqcomi 2747 | . . . . . 6 ⊢ ((𝑋‘2) − (𝑌‘2)) = 𝐵 |
23 | 22 | eqeq1i 2743 | . . . . 5 ⊢ (((𝑋‘2) − (𝑌‘2)) = 0 ↔ 𝐵 = 0) |
24 | 20, 23 | bitrdi 286 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ 𝐵 = 0)) |
25 | 24 | necon3bid 2987 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ 𝐵 ≠ 0)) |
26 | 25 | orbi2d 912 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))) |
27 | 5, 26 | mpbid 231 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {cpr 4560 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 − cmin 11135 2c2 11958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-2 11966 |
This theorem is referenced by: itsclinecirc0 46007 itsclinecirc0b 46008 itsclinecirc0in 46009 inlinecirc02plem 46020 |
Copyright terms: Public domain | W3C validator |