Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnedifcoorneorr Structured version   Visualization version   GIF version

Theorem rrx2pnedifcoorneorr 48699
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
rrx2pnedifcoorneor.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2pnedifcoorneorr.b 𝐵 = ((𝑋‘2) − (𝑌‘2))
Assertion
Ref Expression
rrx2pnedifcoorneorr ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))

Proof of Theorem rrx2pnedifcoorneorr
StepHypRef Expression
1 rrx2pnecoorneor.i . . 3 𝐼 = {1, 2}
2 rrx2pnecoorneor.b . . 3 𝑃 = (ℝ ↑m 𝐼)
3 rrx2pnedifcoorneor.a . . 3 𝐴 = ((𝑌‘1) − (𝑋‘1))
4 eqid 2729 . . 3 ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2))
51, 2, 3, 4rrx2pnedifcoorneor 48698 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0))
6 eqcom 2736 . . . . . . 7 ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2))
76a1i 11 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2)))
81, 2rrx2pyel 48694 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
98recnd 11178 . . . . . . . . . 10 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
101, 2rrx2pyel 48694 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
1110recnd 11178 . . . . . . . . . 10 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
129, 11anim12i 613 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ))
1312ancomd 461 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ))
14133adant3 1132 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ))
15 subeq0 11424 . . . . . . 7 (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
1614, 15syl 17 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
17123adant3 1132 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ))
18 subeq0 11424 . . . . . . 7 (((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2)))
1917, 18syl 17 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2)))
207, 16, 193bitr4d 311 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ ((𝑋‘2) − (𝑌‘2)) = 0))
21 rrx2pnedifcoorneorr.b . . . . . . 7 𝐵 = ((𝑋‘2) − (𝑌‘2))
2221eqcomi 2738 . . . . . 6 ((𝑋‘2) − (𝑌‘2)) = 𝐵
2322eqeq1i 2734 . . . . 5 (((𝑋‘2) − (𝑌‘2)) = 0 ↔ 𝐵 = 0)
2420, 23bitrdi 287 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ 𝐵 = 0))
2524necon3bid 2969 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ 𝐵 ≠ 0))
2625orbi2d 915 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)))
275, 26mpbid 232 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {cpr 4587  cfv 6499  (class class class)co 7369  m cmap 8776  cc 11042  cr 11043  0cc0 11044  1c1 11045  cmin 11381  2c2 12217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-sub 11383  df-2 12225
This theorem is referenced by:  itsclinecirc0  48755  itsclinecirc0b  48756  itsclinecirc0in  48757  inlinecirc02plem  48768
  Copyright terms: Public domain W3C validator