Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnedifcoorneorr Structured version   Visualization version   GIF version

Theorem rrx2pnedifcoorneorr 48728
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
rrx2pnedifcoorneor.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2pnedifcoorneorr.b 𝐵 = ((𝑋‘2) − (𝑌‘2))
Assertion
Ref Expression
rrx2pnedifcoorneorr ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))

Proof of Theorem rrx2pnedifcoorneorr
StepHypRef Expression
1 rrx2pnecoorneor.i . . 3 𝐼 = {1, 2}
2 rrx2pnecoorneor.b . . 3 𝑃 = (ℝ ↑m 𝐼)
3 rrx2pnedifcoorneor.a . . 3 𝐴 = ((𝑌‘1) − (𝑋‘1))
4 eqid 2730 . . 3 ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2))
51, 2, 3, 4rrx2pnedifcoorneor 48727 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0))
6 eqcom 2737 . . . . . . 7 ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2))
76a1i 11 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2)))
81, 2rrx2pyel 48723 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
98recnd 11132 . . . . . . . . . 10 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
101, 2rrx2pyel 48723 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
1110recnd 11132 . . . . . . . . . 10 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
129, 11anim12i 613 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ))
1312ancomd 461 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ))
14133adant3 1132 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ))
15 subeq0 11379 . . . . . . 7 (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
1614, 15syl 17 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
17123adant3 1132 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ))
18 subeq0 11379 . . . . . . 7 (((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2)))
1917, 18syl 17 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2)))
207, 16, 193bitr4d 311 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ ((𝑋‘2) − (𝑌‘2)) = 0))
21 rrx2pnedifcoorneorr.b . . . . . . 7 𝐵 = ((𝑋‘2) − (𝑌‘2))
2221eqcomi 2739 . . . . . 6 ((𝑋‘2) − (𝑌‘2)) = 𝐵
2322eqeq1i 2735 . . . . 5 (((𝑋‘2) − (𝑌‘2)) = 0 ↔ 𝐵 = 0)
2420, 23bitrdi 287 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ 𝐵 = 0))
2524necon3bid 2970 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ 𝐵 ≠ 0))
2625orbi2d 915 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)))
275, 26mpbid 232 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2110  wne 2926  {cpr 4576  cfv 6477  (class class class)co 7341  m cmap 8745  cc 10996  cr 10997  0cc0 10998  1c1 10999  cmin 11336  2c2 12172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-ltxr 11143  df-sub 11338  df-2 12180
This theorem is referenced by:  itsclinecirc0  48784  itsclinecirc0b  48785  itsclinecirc0in  48786  inlinecirc02plem  48797
  Copyright terms: Public domain W3C validator