![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pnedifcoorneorr | Structured version Visualization version GIF version |
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.) |
Ref | Expression |
---|---|
rrx2pnecoorneor.i | ⊢ 𝐼 = {1, 2} |
rrx2pnecoorneor.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
rrx2pnedifcoorneor.a | ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) |
rrx2pnedifcoorneorr.b | ⊢ 𝐵 = ((𝑋‘2) − (𝑌‘2)) |
Ref | Expression |
---|---|
rrx2pnedifcoorneorr | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrx2pnecoorneor.i | . . 3 ⊢ 𝐼 = {1, 2} | |
2 | rrx2pnecoorneor.b | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
3 | rrx2pnedifcoorneor.a | . . 3 ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) | |
4 | eqid 2735 | . . 3 ⊢ ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2)) | |
5 | 1, 2, 3, 4 | rrx2pnedifcoorneor 48566 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0)) |
6 | eqcom 2742 | . . . . . . 7 ⊢ ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2)) | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2))) |
8 | 1, 2 | rrx2pyel 48562 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
9 | 8 | recnd 11287 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℂ) |
10 | 1, 2 | rrx2pyel 48562 | . . . . . . . . . . 11 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
11 | 10 | recnd 11287 | . . . . . . . . . 10 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℂ) |
12 | 9, 11 | anim12i 613 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ)) |
13 | 12 | ancomd 461 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ)) |
14 | 13 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ)) |
15 | subeq0 11533 | . . . . . . 7 ⊢ (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) | |
16 | 14, 15 | syl 17 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) |
17 | 12 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ)) |
18 | subeq0 11533 | . . . . . . 7 ⊢ (((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2))) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2))) |
20 | 7, 16, 19 | 3bitr4d 311 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ ((𝑋‘2) − (𝑌‘2)) = 0)) |
21 | rrx2pnedifcoorneorr.b | . . . . . . 7 ⊢ 𝐵 = ((𝑋‘2) − (𝑌‘2)) | |
22 | 21 | eqcomi 2744 | . . . . . 6 ⊢ ((𝑋‘2) − (𝑌‘2)) = 𝐵 |
23 | 22 | eqeq1i 2740 | . . . . 5 ⊢ (((𝑋‘2) − (𝑌‘2)) = 0 ↔ 𝐵 = 0) |
24 | 20, 23 | bitrdi 287 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ 𝐵 = 0)) |
25 | 24 | necon3bid 2983 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ 𝐵 ≠ 0)) |
26 | 25 | orbi2d 915 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))) |
27 | 5, 26 | mpbid 232 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {cpr 4633 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 − cmin 11490 2c2 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-2 12327 |
This theorem is referenced by: itsclinecirc0 48623 itsclinecirc0b 48624 itsclinecirc0in 48625 inlinecirc02plem 48636 |
Copyright terms: Public domain | W3C validator |