Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnedifcoorneorr Structured version   Visualization version   GIF version

Theorem rrx2pnedifcoorneorr 48664
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
rrx2pnedifcoorneor.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2pnedifcoorneorr.b 𝐵 = ((𝑋‘2) − (𝑌‘2))
Assertion
Ref Expression
rrx2pnedifcoorneorr ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))

Proof of Theorem rrx2pnedifcoorneorr
StepHypRef Expression
1 rrx2pnecoorneor.i . . 3 𝐼 = {1, 2}
2 rrx2pnecoorneor.b . . 3 𝑃 = (ℝ ↑m 𝐼)
3 rrx2pnedifcoorneor.a . . 3 𝐴 = ((𝑌‘1) − (𝑋‘1))
4 eqid 2736 . . 3 ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2))
51, 2, 3, 4rrx2pnedifcoorneor 48663 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0))
6 eqcom 2743 . . . . . . 7 ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2))
76a1i 11 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2)))
81, 2rrx2pyel 48659 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
98recnd 11268 . . . . . . . . . 10 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
101, 2rrx2pyel 48659 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
1110recnd 11268 . . . . . . . . . 10 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
129, 11anim12i 613 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ))
1312ancomd 461 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ))
14133adant3 1132 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ))
15 subeq0 11514 . . . . . . 7 (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
1614, 15syl 17 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
17123adant3 1132 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ))
18 subeq0 11514 . . . . . . 7 (((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2)))
1917, 18syl 17 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2)))
207, 16, 193bitr4d 311 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ ((𝑋‘2) − (𝑌‘2)) = 0))
21 rrx2pnedifcoorneorr.b . . . . . . 7 𝐵 = ((𝑋‘2) − (𝑌‘2))
2221eqcomi 2745 . . . . . 6 ((𝑋‘2) − (𝑌‘2)) = 𝐵
2322eqeq1i 2741 . . . . 5 (((𝑋‘2) − (𝑌‘2)) = 0 ↔ 𝐵 = 0)
2420, 23bitrdi 287 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ 𝐵 = 0))
2524necon3bid 2977 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ 𝐵 ≠ 0))
2625orbi2d 915 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)))
275, 26mpbid 232 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  {cpr 4608  cfv 6536  (class class class)co 7410  m cmap 8845  cc 11132  cr 11133  0cc0 11134  1c1 11135  cmin 11471  2c2 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279  df-sub 11473  df-2 12308
This theorem is referenced by:  itsclinecirc0  48720  itsclinecirc0b  48721  itsclinecirc0in  48722  inlinecirc02plem  48733
  Copyright terms: Public domain W3C validator