Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pnedifcoorneorr | Structured version Visualization version GIF version |
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.) |
Ref | Expression |
---|---|
rrx2pnecoorneor.i | ⊢ 𝐼 = {1, 2} |
rrx2pnecoorneor.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
rrx2pnedifcoorneor.a | ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) |
rrx2pnedifcoorneorr.b | ⊢ 𝐵 = ((𝑋‘2) − (𝑌‘2)) |
Ref | Expression |
---|---|
rrx2pnedifcoorneorr | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrx2pnecoorneor.i | . . 3 ⊢ 𝐼 = {1, 2} | |
2 | rrx2pnecoorneor.b | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
3 | rrx2pnedifcoorneor.a | . . 3 ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) | |
4 | eqid 2738 | . . 3 ⊢ ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2)) | |
5 | 1, 2, 3, 4 | rrx2pnedifcoorneor 46062 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0)) |
6 | eqcom 2745 | . . . . . . 7 ⊢ ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2)) | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2))) |
8 | 1, 2 | rrx2pyel 46058 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
9 | 8 | recnd 11003 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℂ) |
10 | 1, 2 | rrx2pyel 46058 | . . . . . . . . . . 11 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
11 | 10 | recnd 11003 | . . . . . . . . . 10 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℂ) |
12 | 9, 11 | anim12i 613 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ)) |
13 | 12 | ancomd 462 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ)) |
14 | 13 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ)) |
15 | subeq0 11247 | . . . . . . 7 ⊢ (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) | |
16 | 14, 15 | syl 17 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) |
17 | 12 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ)) |
18 | subeq0 11247 | . . . . . . 7 ⊢ (((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2))) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2))) |
20 | 7, 16, 19 | 3bitr4d 311 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ ((𝑋‘2) − (𝑌‘2)) = 0)) |
21 | rrx2pnedifcoorneorr.b | . . . . . . 7 ⊢ 𝐵 = ((𝑋‘2) − (𝑌‘2)) | |
22 | 21 | eqcomi 2747 | . . . . . 6 ⊢ ((𝑋‘2) − (𝑌‘2)) = 𝐵 |
23 | 22 | eqeq1i 2743 | . . . . 5 ⊢ (((𝑋‘2) − (𝑌‘2)) = 0 ↔ 𝐵 = 0) |
24 | 20, 23 | bitrdi 287 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ 𝐵 = 0)) |
25 | 24 | necon3bid 2988 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ 𝐵 ≠ 0)) |
26 | 25 | orbi2d 913 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))) |
27 | 5, 26 | mpbid 231 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {cpr 4563 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 − cmin 11205 2c2 12028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 df-2 12036 |
This theorem is referenced by: itsclinecirc0 46119 itsclinecirc0b 46120 itsclinecirc0in 46121 inlinecirc02plem 46132 |
Copyright terms: Public domain | W3C validator |