| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pnedifcoorneorr | Structured version Visualization version GIF version | ||
| Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrx2pnecoorneor.i | ⊢ 𝐼 = {1, 2} |
| rrx2pnecoorneor.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrx2pnedifcoorneor.a | ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) |
| rrx2pnedifcoorneorr.b | ⊢ 𝐵 = ((𝑋‘2) − (𝑌‘2)) |
| Ref | Expression |
|---|---|
| rrx2pnedifcoorneorr | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrx2pnecoorneor.i | . . 3 ⊢ 𝐼 = {1, 2} | |
| 2 | rrx2pnecoorneor.b | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 3 | rrx2pnedifcoorneor.a | . . 3 ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) | |
| 4 | eqid 2729 | . . 3 ⊢ ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2)) | |
| 5 | 1, 2, 3, 4 | rrx2pnedifcoorneor 48698 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0)) |
| 6 | eqcom 2736 | . . . . . . 7 ⊢ ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2)) | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2))) |
| 8 | 1, 2 | rrx2pyel 48694 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| 9 | 8 | recnd 11178 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℂ) |
| 10 | 1, 2 | rrx2pyel 48694 | . . . . . . . . . . 11 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
| 11 | 10 | recnd 11178 | . . . . . . . . . 10 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℂ) |
| 12 | 9, 11 | anim12i 613 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ)) |
| 13 | 12 | ancomd 461 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ)) |
| 14 | 13 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ)) |
| 15 | subeq0 11424 | . . . . . . 7 ⊢ (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) | |
| 16 | 14, 15 | syl 17 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) |
| 17 | 12 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ)) |
| 18 | subeq0 11424 | . . . . . . 7 ⊢ (((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2))) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2))) |
| 20 | 7, 16, 19 | 3bitr4d 311 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ ((𝑋‘2) − (𝑌‘2)) = 0)) |
| 21 | rrx2pnedifcoorneorr.b | . . . . . . 7 ⊢ 𝐵 = ((𝑋‘2) − (𝑌‘2)) | |
| 22 | 21 | eqcomi 2738 | . . . . . 6 ⊢ ((𝑋‘2) − (𝑌‘2)) = 𝐵 |
| 23 | 22 | eqeq1i 2734 | . . . . 5 ⊢ (((𝑋‘2) − (𝑌‘2)) = 0 ↔ 𝐵 = 0) |
| 24 | 20, 23 | bitrdi 287 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ 𝐵 = 0)) |
| 25 | 24 | necon3bid 2969 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ 𝐵 ≠ 0)) |
| 26 | 25 | orbi2d 915 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))) |
| 27 | 5, 26 | mpbid 232 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {cpr 4587 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 − cmin 11381 2c2 12217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-2 12225 |
| This theorem is referenced by: itsclinecirc0 48755 itsclinecirc0b 48756 itsclinecirc0in 48757 inlinecirc02plem 48768 |
| Copyright terms: Public domain | W3C validator |