Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnedifcoorneorr Structured version   Visualization version   GIF version

Theorem rrx2pnedifcoorneorr 47393
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
rrx2pnedifcoorneor.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2pnedifcoorneorr.b 𝐵 = ((𝑋‘2) − (𝑌‘2))
Assertion
Ref Expression
rrx2pnedifcoorneorr ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))

Proof of Theorem rrx2pnedifcoorneorr
StepHypRef Expression
1 rrx2pnecoorneor.i . . 3 𝐼 = {1, 2}
2 rrx2pnecoorneor.b . . 3 𝑃 = (ℝ ↑m 𝐼)
3 rrx2pnedifcoorneor.a . . 3 𝐴 = ((𝑌‘1) − (𝑋‘1))
4 eqid 2732 . . 3 ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2))
51, 2, 3, 4rrx2pnedifcoorneor 47392 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0))
6 eqcom 2739 . . . . . . 7 ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2))
76a1i 11 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2)))
81, 2rrx2pyel 47388 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
98recnd 11241 . . . . . . . . . 10 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
101, 2rrx2pyel 47388 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
1110recnd 11241 . . . . . . . . . 10 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
129, 11anim12i 613 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ))
1312ancomd 462 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ))
14133adant3 1132 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ))
15 subeq0 11485 . . . . . . 7 (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
1614, 15syl 17 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
17123adant3 1132 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ))
18 subeq0 11485 . . . . . . 7 (((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2)))
1917, 18syl 17 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2)))
207, 16, 193bitr4d 310 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ ((𝑋‘2) − (𝑌‘2)) = 0))
21 rrx2pnedifcoorneorr.b . . . . . . 7 𝐵 = ((𝑋‘2) − (𝑌‘2))
2221eqcomi 2741 . . . . . 6 ((𝑋‘2) − (𝑌‘2)) = 𝐵
2322eqeq1i 2737 . . . . 5 (((𝑋‘2) − (𝑌‘2)) = 0 ↔ 𝐵 = 0)
2420, 23bitrdi 286 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ 𝐵 = 0))
2524necon3bid 2985 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ 𝐵 ≠ 0))
2625orbi2d 914 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)))
275, 26mpbid 231 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940  {cpr 4630  cfv 6543  (class class class)co 7408  m cmap 8819  cc 11107  cr 11108  0cc0 11109  1c1 11110  cmin 11443  2c2 12266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-ltxr 11252  df-sub 11445  df-2 12274
This theorem is referenced by:  itsclinecirc0  47449  itsclinecirc0b  47450  itsclinecirc0in  47451  inlinecirc02plem  47462
  Copyright terms: Public domain W3C validator