Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnedifcoorneorr Structured version   Visualization version   GIF version

Theorem rrx2pnedifcoorneorr 48643
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
rrx2pnedifcoorneor.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2pnedifcoorneorr.b 𝐵 = ((𝑋‘2) − (𝑌‘2))
Assertion
Ref Expression
rrx2pnedifcoorneorr ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))

Proof of Theorem rrx2pnedifcoorneorr
StepHypRef Expression
1 rrx2pnecoorneor.i . . 3 𝐼 = {1, 2}
2 rrx2pnecoorneor.b . . 3 𝑃 = (ℝ ↑m 𝐼)
3 rrx2pnedifcoorneor.a . . 3 𝐴 = ((𝑌‘1) − (𝑋‘1))
4 eqid 2736 . . 3 ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2))
51, 2, 3, 4rrx2pnedifcoorneor 48642 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0))
6 eqcom 2743 . . . . . . 7 ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2))
76a1i 11 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2)))
81, 2rrx2pyel 48638 . . . . . . . . . . 11 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
98recnd 11290 . . . . . . . . . 10 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
101, 2rrx2pyel 48638 . . . . . . . . . . 11 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
1110recnd 11290 . . . . . . . . . 10 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
129, 11anim12i 613 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ))
1312ancomd 461 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ))
14133adant3 1132 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ))
15 subeq0 11536 . . . . . . 7 (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
1614, 15syl 17 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
17123adant3 1132 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ))
18 subeq0 11536 . . . . . . 7 (((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2)))
1917, 18syl 17 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2)))
207, 16, 193bitr4d 311 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ ((𝑋‘2) − (𝑌‘2)) = 0))
21 rrx2pnedifcoorneorr.b . . . . . . 7 𝐵 = ((𝑋‘2) − (𝑌‘2))
2221eqcomi 2745 . . . . . 6 ((𝑋‘2) − (𝑌‘2)) = 𝐵
2322eqeq1i 2741 . . . . 5 (((𝑋‘2) − (𝑌‘2)) = 0 ↔ 𝐵 = 0)
2420, 23bitrdi 287 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ 𝐵 = 0))
2524necon3bid 2984 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ 𝐵 ≠ 0))
2625orbi2d 915 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)))
275, 26mpbid 232 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2939  {cpr 4627  cfv 6560  (class class class)co 7432  m cmap 8867  cc 11154  cr 11155  0cc0 11156  1c1 11157  cmin 11493  2c2 12322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-ltxr 11301  df-sub 11495  df-2 12330
This theorem is referenced by:  itsclinecirc0  48699  itsclinecirc0b  48700  itsclinecirc0in  48701  inlinecirc02plem  48712
  Copyright terms: Public domain W3C validator