| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2pnedifcoorneorr | Structured version Visualization version GIF version | ||
| Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrx2pnecoorneor.i | ⊢ 𝐼 = {1, 2} |
| rrx2pnecoorneor.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrx2pnedifcoorneor.a | ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) |
| rrx2pnedifcoorneorr.b | ⊢ 𝐵 = ((𝑋‘2) − (𝑌‘2)) |
| Ref | Expression |
|---|---|
| rrx2pnedifcoorneorr | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrx2pnecoorneor.i | . . 3 ⊢ 𝐼 = {1, 2} | |
| 2 | rrx2pnecoorneor.b | . . 3 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 3 | rrx2pnedifcoorneor.a | . . 3 ⊢ 𝐴 = ((𝑌‘1) − (𝑋‘1)) | |
| 4 | eqid 2731 | . . 3 ⊢ ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2)) | |
| 5 | 1, 2, 3, 4 | rrx2pnedifcoorneor 48822 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0)) |
| 6 | eqcom 2738 | . . . . . . 7 ⊢ ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2)) | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑌‘2) = (𝑋‘2) ↔ (𝑋‘2) = (𝑌‘2))) |
| 8 | 1, 2 | rrx2pyel 48818 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| 9 | 8 | recnd 11146 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℂ) |
| 10 | 1, 2 | rrx2pyel 48818 | . . . . . . . . . . 11 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
| 11 | 10 | recnd 11146 | . . . . . . . . . 10 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℂ) |
| 12 | 9, 11 | anim12i 613 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ)) |
| 13 | 12 | ancomd 461 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ)) |
| 14 | 13 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ)) |
| 15 | subeq0 11393 | . . . . . . 7 ⊢ (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) | |
| 16 | 14, 15 | syl 17 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2))) |
| 17 | 12 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ)) |
| 18 | subeq0 11393 | . . . . . . 7 ⊢ (((𝑋‘2) ∈ ℂ ∧ (𝑌‘2) ∈ ℂ) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2))) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑋‘2) − (𝑌‘2)) = 0 ↔ (𝑋‘2) = (𝑌‘2))) |
| 20 | 7, 16, 19 | 3bitr4d 311 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ ((𝑋‘2) − (𝑌‘2)) = 0)) |
| 21 | rrx2pnedifcoorneorr.b | . . . . . . 7 ⊢ 𝐵 = ((𝑋‘2) − (𝑌‘2)) | |
| 22 | 21 | eqcomi 2740 | . . . . . 6 ⊢ ((𝑋‘2) − (𝑌‘2)) = 𝐵 |
| 23 | 22 | eqeq1i 2736 | . . . . 5 ⊢ (((𝑋‘2) − (𝑌‘2)) = 0 ↔ 𝐵 = 0) |
| 24 | 20, 23 | bitrdi 287 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ 𝐵 = 0)) |
| 25 | 24 | necon3bid 2972 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ 𝐵 ≠ 0)) |
| 26 | 25 | orbi2d 915 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝐴 ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))) |
| 27 | 5, 26 | mpbid 232 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {cpr 4577 ‘cfv 6487 (class class class)co 7352 ↑m cmap 8756 ℂcc 11010 ℝcr 11011 0cc0 11012 1c1 11013 − cmin 11350 2c2 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-ltxr 11157 df-sub 11352 df-2 12194 |
| This theorem is referenced by: itsclinecirc0 48879 itsclinecirc0b 48880 itsclinecirc0in 48881 inlinecirc02plem 48892 |
| Copyright terms: Public domain | W3C validator |