Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prelrrx2 | Structured version Visualization version GIF version |
Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023.) |
Ref | Expression |
---|---|
prelrrx2.i | ⊢ 𝐼 = {1, 2} |
prelrrx2.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
Ref | Expression |
---|---|
prelrrx2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉} ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ex 10971 | . . . . . . . 8 ⊢ 1 ∈ V | |
2 | 2ex 12050 | . . . . . . . 8 ⊢ 2 ∈ V | |
3 | 1, 2 | pm3.2i 471 | . . . . . . 7 ⊢ (1 ∈ V ∧ 2 ∈ V) |
4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 ∈ V ∧ 2 ∈ V)) |
5 | id 22 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) | |
6 | 1ne2 12181 | . . . . . . 7 ⊢ 1 ≠ 2 | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 ≠ 2) |
8 | 4, 5, 7 | 3jca 1127 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2)) |
9 | fprg 7027 | . . . . 5 ⊢ (((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2) → {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶{𝐴, 𝐵}) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶{𝐴, 𝐵}) |
11 | prssi 4754 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ) | |
12 | 10, 11 | fssd 6618 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶ℝ) |
13 | reex 10962 | . . . . 5 ⊢ ℝ ∈ V | |
14 | prex 5355 | . . . . 5 ⊢ {1, 2} ∈ V | |
15 | 13, 14 | pm3.2i 471 | . . . 4 ⊢ (ℝ ∈ V ∧ {1, 2} ∈ V) |
16 | elmapg 8628 | . . . 4 ⊢ ((ℝ ∈ V ∧ {1, 2} ∈ V) → ({〈1, 𝐴〉, 〈2, 𝐵〉} ∈ (ℝ ↑m {1, 2}) ↔ {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶ℝ)) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ ({〈1, 𝐴〉, 〈2, 𝐵〉} ∈ (ℝ ↑m {1, 2}) ↔ {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶ℝ) |
18 | 12, 17 | sylibr 233 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉} ∈ (ℝ ↑m {1, 2})) |
19 | prelrrx2.b | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
20 | prelrrx2.i | . . . . 5 ⊢ 𝐼 = {1, 2} | |
21 | 20 | oveq2i 7286 | . . . 4 ⊢ (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2}) |
22 | 19, 21 | eqtri 2766 | . . 3 ⊢ 𝑃 = (ℝ ↑m {1, 2}) |
23 | 22 | eleq2i 2830 | . 2 ⊢ ({〈1, 𝐴〉, 〈2, 𝐵〉} ∈ 𝑃 ↔ {〈1, 𝐴〉, 〈2, 𝐵〉} ∈ (ℝ ↑m {1, 2})) |
24 | 18, 23 | sylibr 233 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉} ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 {cpr 4563 〈cop 4567 ⟶wf 6429 (class class class)co 7275 ↑m cmap 8615 ℝcr 10870 1c1 10872 2c2 12028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-2 12036 |
This theorem is referenced by: prelrrx2b 46060 rrx2xpref1o 46064 rrx2plordisom 46069 line2ylem 46097 line2xlem 46099 itscnhlinecirc02p 46131 inlinecirc02plem 46132 |
Copyright terms: Public domain | W3C validator |