Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prelrrx2 Structured version   Visualization version   GIF version

Theorem prelrrx2 46059
Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023.)
Hypotheses
Ref Expression
prelrrx2.i 𝐼 = {1, 2}
prelrrx2.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
prelrrx2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃)

Proof of Theorem prelrrx2
StepHypRef Expression
1 1ex 10971 . . . . . . . 8 1 ∈ V
2 2ex 12050 . . . . . . . 8 2 ∈ V
31, 2pm3.2i 471 . . . . . . 7 (1 ∈ V ∧ 2 ∈ V)
43a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 ∈ V ∧ 2 ∈ V))
5 id 22 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
6 1ne2 12181 . . . . . . 7 1 ≠ 2
76a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 ≠ 2)
84, 5, 73jca 1127 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2))
9 fprg 7027 . . . . 5 (((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶{𝐴, 𝐵})
108, 9syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶{𝐴, 𝐵})
11 prssi 4754 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ)
1210, 11fssd 6618 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ)
13 reex 10962 . . . . 5 ℝ ∈ V
14 prex 5355 . . . . 5 {1, 2} ∈ V
1513, 14pm3.2i 471 . . . 4 (ℝ ∈ V ∧ {1, 2} ∈ V)
16 elmapg 8628 . . . 4 ((ℝ ∈ V ∧ {1, 2} ∈ V) → ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}) ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ))
1715, 16ax-mp 5 . . 3 ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}) ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ)
1812, 17sylibr 233 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}))
19 prelrrx2.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
20 prelrrx2.i . . . . 5 𝐼 = {1, 2}
2120oveq2i 7286 . . . 4 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
2219, 21eqtri 2766 . . 3 𝑃 = (ℝ ↑m {1, 2})
2322eleq2i 2830 . 2 ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃 ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}))
2418, 23sylibr 233 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  {cpr 4563  cop 4567  wf 6429  (class class class)co 7275  m cmap 8615  cr 10870  1c1 10872  2c2 12028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-2 12036
This theorem is referenced by:  prelrrx2b  46060  rrx2xpref1o  46064  rrx2plordisom  46069  line2ylem  46097  line2xlem  46099  itscnhlinecirc02p  46131  inlinecirc02plem  46132
  Copyright terms: Public domain W3C validator