Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prelrrx2 Structured version   Visualization version   GIF version

Theorem prelrrx2 44528
Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023.)
Hypotheses
Ref Expression
prelrrx2.i 𝐼 = {1, 2}
prelrrx2.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
prelrrx2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃)

Proof of Theorem prelrrx2
StepHypRef Expression
1 1ex 10629 . . . . . . . 8 1 ∈ V
2 2ex 11706 . . . . . . . 8 2 ∈ V
31, 2pm3.2i 471 . . . . . . 7 (1 ∈ V ∧ 2 ∈ V)
43a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 ∈ V ∧ 2 ∈ V))
5 id 22 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
6 1ne2 11837 . . . . . . 7 1 ≠ 2
76a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 ≠ 2)
84, 5, 73jca 1122 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2))
9 fprg 6912 . . . . 5 (((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶{𝐴, 𝐵})
108, 9syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶{𝐴, 𝐵})
11 prssi 4752 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ)
1210, 11fssd 6524 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ)
13 reex 10620 . . . . 5 ℝ ∈ V
14 prex 5328 . . . . 5 {1, 2} ∈ V
1513, 14pm3.2i 471 . . . 4 (ℝ ∈ V ∧ {1, 2} ∈ V)
16 elmapg 8412 . . . 4 ((ℝ ∈ V ∧ {1, 2} ∈ V) → ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}) ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ))
1715, 16ax-mp 5 . . 3 ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}) ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ)
1812, 17sylibr 235 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}))
19 prelrrx2.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
20 prelrrx2.i . . . . 5 𝐼 = {1, 2}
2120oveq2i 7162 . . . 4 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
2219, 21eqtri 2848 . . 3 𝑃 = (ℝ ↑m {1, 2})
2322eleq2i 2908 . 2 ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃 ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}))
2418, 23sylibr 235 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020  Vcvv 3499  {cpr 4565  cop 4569  wf 6347  (class class class)co 7151  m cmap 8399  cr 10528  1c1 10530  2c2 11684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-2 11692
This theorem is referenced by:  prelrrx2b  44529  rrx2xpref1o  44533  rrx2plordisom  44538  line2ylem  44566  line2xlem  44568  itscnhlinecirc02p  44600  inlinecirc02plem  44601
  Copyright terms: Public domain W3C validator