Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prelrrx2 Structured version   Visualization version   GIF version

Theorem prelrrx2 48751
Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023.)
Hypotheses
Ref Expression
prelrrx2.i 𝐼 = {1, 2}
prelrrx2.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
prelrrx2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃)

Proof of Theorem prelrrx2
StepHypRef Expression
1 1ex 11108 . . . . . . . 8 1 ∈ V
2 2ex 12202 . . . . . . . 8 2 ∈ V
31, 2pm3.2i 470 . . . . . . 7 (1 ∈ V ∧ 2 ∈ V)
43a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 ∈ V ∧ 2 ∈ V))
5 id 22 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
6 1ne2 12328 . . . . . . 7 1 ≠ 2
76a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 ≠ 2)
84, 5, 73jca 1128 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2))
9 fprg 7088 . . . . 5 (((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶{𝐴, 𝐵})
108, 9syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶{𝐴, 𝐵})
11 prssi 4773 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ)
1210, 11fssd 6668 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ)
13 reex 11097 . . . . 5 ℝ ∈ V
14 prex 5375 . . . . 5 {1, 2} ∈ V
1513, 14pm3.2i 470 . . . 4 (ℝ ∈ V ∧ {1, 2} ∈ V)
16 elmapg 8763 . . . 4 ((ℝ ∈ V ∧ {1, 2} ∈ V) → ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}) ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ))
1715, 16ax-mp 5 . . 3 ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}) ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ)
1812, 17sylibr 234 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}))
19 prelrrx2.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
20 prelrrx2.i . . . . 5 𝐼 = {1, 2}
2120oveq2i 7357 . . . 4 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
2219, 21eqtri 2754 . . 3 𝑃 = (ℝ ↑m {1, 2})
2322eleq2i 2823 . 2 ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃 ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}))
2418, 23sylibr 234 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  {cpr 4578  cop 4582  wf 6477  (class class class)co 7346  m cmap 8750  cr 11005  1c1 11007  2c2 12180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-2 12188
This theorem is referenced by:  prelrrx2b  48752  rrx2xpref1o  48756  rrx2plordisom  48761  line2ylem  48789  line2xlem  48791  itscnhlinecirc02p  48823  inlinecirc02plem  48824
  Copyright terms: Public domain W3C validator