| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prelrrx2 | Structured version Visualization version GIF version | ||
| Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023.) |
| Ref | Expression |
|---|---|
| prelrrx2.i | ⊢ 𝐼 = {1, 2} |
| prelrrx2.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| prelrrx2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉} ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11108 | . . . . . . . 8 ⊢ 1 ∈ V | |
| 2 | 2ex 12202 | . . . . . . . 8 ⊢ 2 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . . . . 7 ⊢ (1 ∈ V ∧ 2 ∈ V) |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 ∈ V ∧ 2 ∈ V)) |
| 5 | id 22 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) | |
| 6 | 1ne2 12328 | . . . . . . 7 ⊢ 1 ≠ 2 | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 ≠ 2) |
| 8 | 4, 5, 7 | 3jca 1128 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2)) |
| 9 | fprg 7088 | . . . . 5 ⊢ (((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2) → {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶{𝐴, 𝐵}) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶{𝐴, 𝐵}) |
| 11 | prssi 4773 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ) | |
| 12 | 10, 11 | fssd 6668 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶ℝ) |
| 13 | reex 11097 | . . . . 5 ⊢ ℝ ∈ V | |
| 14 | prex 5375 | . . . . 5 ⊢ {1, 2} ∈ V | |
| 15 | 13, 14 | pm3.2i 470 | . . . 4 ⊢ (ℝ ∈ V ∧ {1, 2} ∈ V) |
| 16 | elmapg 8763 | . . . 4 ⊢ ((ℝ ∈ V ∧ {1, 2} ∈ V) → ({〈1, 𝐴〉, 〈2, 𝐵〉} ∈ (ℝ ↑m {1, 2}) ↔ {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶ℝ)) | |
| 17 | 15, 16 | ax-mp 5 | . . 3 ⊢ ({〈1, 𝐴〉, 〈2, 𝐵〉} ∈ (ℝ ↑m {1, 2}) ↔ {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶ℝ) |
| 18 | 12, 17 | sylibr 234 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉} ∈ (ℝ ↑m {1, 2})) |
| 19 | prelrrx2.b | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 20 | prelrrx2.i | . . . . 5 ⊢ 𝐼 = {1, 2} | |
| 21 | 20 | oveq2i 7357 | . . . 4 ⊢ (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2}) |
| 22 | 19, 21 | eqtri 2754 | . . 3 ⊢ 𝑃 = (ℝ ↑m {1, 2}) |
| 23 | 22 | eleq2i 2823 | . 2 ⊢ ({〈1, 𝐴〉, 〈2, 𝐵〉} ∈ 𝑃 ↔ {〈1, 𝐴〉, 〈2, 𝐵〉} ∈ (ℝ ↑m {1, 2})) |
| 24 | 18, 23 | sylibr 234 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉} ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 {cpr 4578 〈cop 4582 ⟶wf 6477 (class class class)co 7346 ↑m cmap 8750 ℝcr 11005 1c1 11007 2c2 12180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-2 12188 |
| This theorem is referenced by: prelrrx2b 48752 rrx2xpref1o 48756 rrx2plordisom 48761 line2ylem 48789 line2xlem 48791 itscnhlinecirc02p 48823 inlinecirc02plem 48824 |
| Copyright terms: Public domain | W3C validator |