Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prelrrx2 Structured version   Visualization version   GIF version

Theorem prelrrx2 45947
Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023.)
Hypotheses
Ref Expression
prelrrx2.i 𝐼 = {1, 2}
prelrrx2.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
prelrrx2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃)

Proof of Theorem prelrrx2
StepHypRef Expression
1 1ex 10902 . . . . . . . 8 1 ∈ V
2 2ex 11980 . . . . . . . 8 2 ∈ V
31, 2pm3.2i 470 . . . . . . 7 (1 ∈ V ∧ 2 ∈ V)
43a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 ∈ V ∧ 2 ∈ V))
5 id 22 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
6 1ne2 12111 . . . . . . 7 1 ≠ 2
76a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 ≠ 2)
84, 5, 73jca 1126 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2))
9 fprg 7009 . . . . 5 (((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶{𝐴, 𝐵})
108, 9syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶{𝐴, 𝐵})
11 prssi 4751 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ)
1210, 11fssd 6602 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ)
13 reex 10893 . . . . 5 ℝ ∈ V
14 prex 5350 . . . . 5 {1, 2} ∈ V
1513, 14pm3.2i 470 . . . 4 (ℝ ∈ V ∧ {1, 2} ∈ V)
16 elmapg 8586 . . . 4 ((ℝ ∈ V ∧ {1, 2} ∈ V) → ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}) ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ))
1715, 16ax-mp 5 . . 3 ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}) ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ)
1812, 17sylibr 233 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}))
19 prelrrx2.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
20 prelrrx2.i . . . . 5 𝐼 = {1, 2}
2120oveq2i 7266 . . . 4 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
2219, 21eqtri 2766 . . 3 𝑃 = (ℝ ↑m {1, 2})
2322eleq2i 2830 . 2 ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃 ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}))
2418, 23sylibr 233 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  {cpr 4560  cop 4564  wf 6414  (class class class)co 7255  m cmap 8573  cr 10801  1c1 10803  2c2 11958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-2 11966
This theorem is referenced by:  prelrrx2b  45948  rrx2xpref1o  45952  rrx2plordisom  45957  line2ylem  45985  line2xlem  45987  itscnhlinecirc02p  46019  inlinecirc02plem  46020
  Copyright terms: Public domain W3C validator