| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prelrrx2 | Structured version Visualization version GIF version | ||
| Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023.) |
| Ref | Expression |
|---|---|
| prelrrx2.i | ⊢ 𝐼 = {1, 2} |
| prelrrx2.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| prelrrx2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉} ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11170 | . . . . . . . 8 ⊢ 1 ∈ V | |
| 2 | 2ex 12263 | . . . . . . . 8 ⊢ 2 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . . . . 7 ⊢ (1 ∈ V ∧ 2 ∈ V) |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 ∈ V ∧ 2 ∈ V)) |
| 5 | id 22 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) | |
| 6 | 1ne2 12389 | . . . . . . 7 ⊢ 1 ≠ 2 | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 ≠ 2) |
| 8 | 4, 5, 7 | 3jca 1128 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2)) |
| 9 | fprg 7127 | . . . . 5 ⊢ (((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2) → {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶{𝐴, 𝐵}) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶{𝐴, 𝐵}) |
| 11 | prssi 4785 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ) | |
| 12 | 10, 11 | fssd 6705 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶ℝ) |
| 13 | reex 11159 | . . . . 5 ⊢ ℝ ∈ V | |
| 14 | prex 5392 | . . . . 5 ⊢ {1, 2} ∈ V | |
| 15 | 13, 14 | pm3.2i 470 | . . . 4 ⊢ (ℝ ∈ V ∧ {1, 2} ∈ V) |
| 16 | elmapg 8812 | . . . 4 ⊢ ((ℝ ∈ V ∧ {1, 2} ∈ V) → ({〈1, 𝐴〉, 〈2, 𝐵〉} ∈ (ℝ ↑m {1, 2}) ↔ {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶ℝ)) | |
| 17 | 15, 16 | ax-mp 5 | . . 3 ⊢ ({〈1, 𝐴〉, 〈2, 𝐵〉} ∈ (ℝ ↑m {1, 2}) ↔ {〈1, 𝐴〉, 〈2, 𝐵〉}:{1, 2}⟶ℝ) |
| 18 | 12, 17 | sylibr 234 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉} ∈ (ℝ ↑m {1, 2})) |
| 19 | prelrrx2.b | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 20 | prelrrx2.i | . . . . 5 ⊢ 𝐼 = {1, 2} | |
| 21 | 20 | oveq2i 7398 | . . . 4 ⊢ (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2}) |
| 22 | 19, 21 | eqtri 2752 | . . 3 ⊢ 𝑃 = (ℝ ↑m {1, 2}) |
| 23 | 22 | eleq2i 2820 | . 2 ⊢ ({〈1, 𝐴〉, 〈2, 𝐵〉} ∈ 𝑃 ↔ {〈1, 𝐴〉, 〈2, 𝐵〉} ∈ (ℝ ↑m {1, 2})) |
| 24 | 18, 23 | sylibr 234 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {〈1, 𝐴〉, 〈2, 𝐵〉} ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 {cpr 4591 〈cop 4595 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 ℝcr 11067 1c1 11069 2c2 12241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-2 12249 |
| This theorem is referenced by: prelrrx2b 48700 rrx2xpref1o 48704 rrx2plordisom 48709 line2ylem 48737 line2xlem 48739 itscnhlinecirc02p 48771 inlinecirc02plem 48772 |
| Copyright terms: Public domain | W3C validator |