Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prelrrx2 Structured version   Visualization version   GIF version

Theorem prelrrx2 47352
Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023.)
Hypotheses
Ref Expression
prelrrx2.i 𝐼 = {1, 2}
prelrrx2.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
prelrrx2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃)

Proof of Theorem prelrrx2
StepHypRef Expression
1 1ex 11206 . . . . . . . 8 1 ∈ V
2 2ex 12285 . . . . . . . 8 2 ∈ V
31, 2pm3.2i 471 . . . . . . 7 (1 ∈ V ∧ 2 ∈ V)
43a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 ∈ V ∧ 2 ∈ V))
5 id 22 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
6 1ne2 12416 . . . . . . 7 1 ≠ 2
76a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 ≠ 2)
84, 5, 73jca 1128 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2))
9 fprg 7149 . . . . 5 (((1 ∈ V ∧ 2 ∈ V) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶{𝐴, 𝐵})
108, 9syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶{𝐴, 𝐵})
11 prssi 4823 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ)
1210, 11fssd 6732 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ)
13 reex 11197 . . . . 5 ℝ ∈ V
14 prex 5431 . . . . 5 {1, 2} ∈ V
1513, 14pm3.2i 471 . . . 4 (ℝ ∈ V ∧ {1, 2} ∈ V)
16 elmapg 8829 . . . 4 ((ℝ ∈ V ∧ {1, 2} ∈ V) → ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}) ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ))
1715, 16ax-mp 5 . . 3 ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}) ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:{1, 2}⟶ℝ)
1812, 17sylibr 233 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}))
19 prelrrx2.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
20 prelrrx2.i . . . . 5 𝐼 = {1, 2}
2120oveq2i 7416 . . . 4 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
2219, 21eqtri 2760 . . 3 𝑃 = (ℝ ↑m {1, 2})
2322eleq2i 2825 . 2 ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃 ↔ {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ (ℝ ↑m {1, 2}))
2418, 23sylibr 233 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  {cpr 4629  cop 4633  wf 6536  (class class class)co 7405  m cmap 8816  cr 11105  1c1 11107  2c2 12263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-2 12271
This theorem is referenced by:  prelrrx2b  47353  rrx2xpref1o  47357  rrx2plordisom  47362  line2ylem  47390  line2xlem  47392  itscnhlinecirc02p  47424  inlinecirc02plem  47425
  Copyright terms: Public domain W3C validator