![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephf1ALT | Structured version Visualization version GIF version |
Description: Alternate proof of alephf1 10110. (Contributed by Mario Carneiro, 15-Mar-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
alephf1ALT | ⊢ ℵ:On–1-1→On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon 10090 | . . 3 ⊢ ℵ Fn On | |
2 | alephon 10094 | . . . . 5 ⊢ (ℵ‘𝑥) ∈ On | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ On → (ℵ‘𝑥) ∈ On) |
4 | 3 | rgen 3052 | . . 3 ⊢ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ On |
5 | ffnfv 7128 | . . 3 ⊢ (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ On)) | |
6 | 1, 4, 5 | mpbir2an 709 | . 2 ⊢ ℵ:On⟶On |
7 | alephsmo 10127 | . 2 ⊢ Smo ℵ | |
8 | smo11 8385 | . 2 ⊢ ((ℵ:On⟶On ∧ Smo ℵ) → ℵ:On–1-1→On) | |
9 | 6, 7, 8 | mp2an 690 | 1 ⊢ ℵ:On–1-1→On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ∀wral 3050 Oncon0 6371 Fn wfn 6544 ⟶wf 6545 –1-1→wf1 6546 ‘cfv 6549 Smo wsmo 8366 ℵcale 9961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-smo 8367 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-oi 9535 df-har 9582 df-card 9964 df-aleph 9965 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |