Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephf1ALT | Structured version Visualization version GIF version |
Description: Alternate proof of alephf1 9911. (Contributed by Mario Carneiro, 15-Mar-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
alephf1ALT | ⊢ ℵ:On–1-1→On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon 9891 | . . 3 ⊢ ℵ Fn On | |
2 | alephon 9895 | . . . . 5 ⊢ (ℵ‘𝑥) ∈ On | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ On → (ℵ‘𝑥) ∈ On) |
4 | 3 | rgen 3064 | . . 3 ⊢ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ On |
5 | ffnfv 7029 | . . 3 ⊢ (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑥 ∈ On (ℵ‘𝑥) ∈ On)) | |
6 | 1, 4, 5 | mpbir2an 708 | . 2 ⊢ ℵ:On⟶On |
7 | alephsmo 9928 | . 2 ⊢ Smo ℵ | |
8 | smo11 8240 | . 2 ⊢ ((ℵ:On⟶On ∧ Smo ℵ) → ℵ:On–1-1→On) | |
9 | 6, 7, 8 | mp2an 689 | 1 ⊢ ℵ:On–1-1→On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ∀wral 3062 Oncon0 6286 Fn wfn 6458 ⟶wf 6459 –1-1→wf1 6460 ‘cfv 6463 Smo wsmo 8221 ℵcale 9762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-smo 8222 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-oi 9337 df-har 9384 df-card 9765 df-aleph 9766 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |