![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwshash | Structured version Visualization version GIF version |
Description: If a word has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word or 1. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
Ref | Expression |
---|---|
cshwrepswhash1.m | ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} |
Ref | Expression |
---|---|
cshwshash | ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | repswsymballbi 14768 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0))) | |
2 | 1 | adantr 479 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0))) |
3 | prmnn 16650 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℙ → (♯‘𝑊) ∈ ℕ) | |
4 | 3 | nnge1d 12296 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℙ → 1 ≤ (♯‘𝑊)) |
5 | wrdsymb1 14541 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑊)) → (𝑊‘0) ∈ 𝑉) | |
6 | 4, 5 | sylan2 591 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊‘0) ∈ 𝑉) |
7 | 6 | adantr 479 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (𝑊‘0) ∈ 𝑉) |
8 | 3 | ad2antlr 725 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑊) ∈ ℕ) |
9 | simpr 483 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) | |
10 | cshwrepswhash1.m | . . . . . . 7 ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} | |
11 | 10 | cshwrepswhash1 17077 | . . . . . 6 ⊢ (((𝑊‘0) ∈ 𝑉 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑀) = 1) |
12 | 7, 8, 9, 11 | syl3anc 1368 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑀) = 1) |
13 | 12 | ex 411 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) → (♯‘𝑀) = 1)) |
14 | 2, 13 | sylbird 259 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0) → (♯‘𝑀) = 1)) |
15 | olc 866 | . . 3 ⊢ ((♯‘𝑀) = 1 → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) | |
16 | 14, 15 | syl6com 37 | . 2 ⊢ (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))) |
17 | rexnal 3096 | . . . 4 ⊢ (∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊‘𝑖) = (𝑊‘0) ↔ ¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0)) | |
18 | df-ne 2937 | . . . . . 6 ⊢ ((𝑊‘𝑖) ≠ (𝑊‘0) ↔ ¬ (𝑊‘𝑖) = (𝑊‘0)) | |
19 | 18 | bicomi 223 | . . . . 5 ⊢ (¬ (𝑊‘𝑖) = (𝑊‘0) ↔ (𝑊‘𝑖) ≠ (𝑊‘0)) |
20 | 19 | rexbii 3090 | . . . 4 ⊢ (∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊‘𝑖) = (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) |
21 | 17, 20 | bitr3i 276 | . . 3 ⊢ (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) |
22 | 10 | cshwshashnsame 17078 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → (♯‘𝑀) = (♯‘𝑊))) |
23 | orc 865 | . . . 4 ⊢ ((♯‘𝑀) = (♯‘𝑊) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) | |
24 | 22, 23 | syl6com 37 | . . 3 ⊢ (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))) |
25 | 21, 24 | sylbi 216 | . 2 ⊢ (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))) |
26 | 16, 25 | pm2.61i 182 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 ∀wral 3057 ∃wrex 3066 {crab 3428 class class class wbr 5150 ‘cfv 6551 (class class class)co 7424 0cc0 11144 1c1 11145 ≤ cle 11285 ℕcn 12248 ..^cfzo 13665 ♯chash 14327 Word cword 14502 repeatS creps 14756 cyclShift ccsh 14776 ℙcprime 16647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-disj 5116 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-oadd 8495 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-inf 9472 df-oi 9539 df-dju 9930 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-n0 12509 df-xnn0 12581 df-z 12595 df-uz 12859 df-rp 13013 df-fz 13523 df-fzo 13666 df-fl 13795 df-mod 13873 df-seq 14005 df-exp 14065 df-hash 14328 df-word 14503 df-concat 14559 df-substr 14629 df-pfx 14659 df-reps 14757 df-csh 14777 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-clim 15470 df-sum 15671 df-dvds 16237 df-gcd 16475 df-prm 16648 df-phi 16740 |
This theorem is referenced by: hashecclwwlkn1 29905 |
Copyright terms: Public domain | W3C validator |