MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwshash Structured version   Visualization version   GIF version

Theorem cshwshash 17013
Description: If a word has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word or 1. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.)
Hypothesis
Ref Expression
cshwrepswhash1.m 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
Assertion
Ref Expression
cshwshash ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))
Distinct variable groups:   𝑛,𝑉,𝑤   𝑛,𝑊,𝑤
Allowed substitution hints:   𝑀(𝑤,𝑛)

Proof of Theorem cshwshash
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 repswsymballbi 14684 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
21adantr 480 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3 prmnn 16582 . . . . . . . . 9 ((♯‘𝑊) ∈ ℙ → (♯‘𝑊) ∈ ℕ)
43nnge1d 12170 . . . . . . . 8 ((♯‘𝑊) ∈ ℙ → 1 ≤ (♯‘𝑊))
5 wrdsymb1 14457 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑊)) → (𝑊‘0) ∈ 𝑉)
64, 5sylan2 593 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊‘0) ∈ 𝑉)
76adantr 480 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (𝑊‘0) ∈ 𝑉)
83ad2antlr 727 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
9 simpr 484 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))
10 cshwrepswhash1.m . . . . . . 7 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
1110cshwrepswhash1 17011 . . . . . 6 (((𝑊‘0) ∈ 𝑉 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑀) = 1)
127, 8, 9, 11syl3anc 1373 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑀) = 1)
1312ex 412 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) → (♯‘𝑀) = 1))
142, 13sylbird 260 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → (♯‘𝑀) = 1))
15 olc 868 . . 3 ((♯‘𝑀) = 1 → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))
1614, 15syl6com 37 . 2 (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)))
17 rexnal 3084 . . . 4 (∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊𝑖) = (𝑊‘0) ↔ ¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
18 df-ne 2929 . . . . . 6 ((𝑊𝑖) ≠ (𝑊‘0) ↔ ¬ (𝑊𝑖) = (𝑊‘0))
1918bicomi 224 . . . . 5 (¬ (𝑊𝑖) = (𝑊‘0) ↔ (𝑊𝑖) ≠ (𝑊‘0))
2019rexbii 3079 . . . 4 (∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊𝑖) = (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))
2117, 20bitr3i 277 . . 3 (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))
2210cshwshashnsame 17012 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) → (♯‘𝑀) = (♯‘𝑊)))
23 orc 867 . . . 4 ((♯‘𝑀) = (♯‘𝑊) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))
2422, 23syl6com 37 . . 3 (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)))
2521, 24sylbi 217 . 2 (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)))
2616, 25pm2.61i 182 1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395   class class class wbr 5091  cfv 6481  (class class class)co 7346  0cc0 11003  1c1 11004  cle 11144  cn 12122  ..^cfzo 13551  chash 14234  Word cword 14417   repeatS creps 14672   cyclShift ccsh 14692  cprime 16579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-hash 14235  df-word 14418  df-concat 14475  df-substr 14546  df-pfx 14576  df-reps 14673  df-csh 14693  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-sum 15591  df-dvds 16161  df-gcd 16403  df-prm 16580  df-phi 16674
This theorem is referenced by:  hashecclwwlkn1  30052
  Copyright terms: Public domain W3C validator