![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwshash | Structured version Visualization version GIF version |
Description: If a word has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word or 1. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
Ref | Expression |
---|---|
cshwrepswhash1.m | ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} |
Ref | Expression |
---|---|
cshwshash | ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | repswsymballbi 14734 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0))) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0))) |
3 | prmnn 16616 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℙ → (♯‘𝑊) ∈ ℕ) | |
4 | 3 | nnge1d 12261 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℙ → 1 ≤ (♯‘𝑊)) |
5 | wrdsymb1 14507 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑊)) → (𝑊‘0) ∈ 𝑉) | |
6 | 4, 5 | sylan2 592 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊‘0) ∈ 𝑉) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (𝑊‘0) ∈ 𝑉) |
8 | 3 | ad2antlr 724 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑊) ∈ ℕ) |
9 | simpr 484 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) | |
10 | cshwrepswhash1.m | . . . . . . 7 ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} | |
11 | 10 | cshwrepswhash1 17043 | . . . . . 6 ⊢ (((𝑊‘0) ∈ 𝑉 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑀) = 1) |
12 | 7, 8, 9, 11 | syl3anc 1368 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑀) = 1) |
13 | 12 | ex 412 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) → (♯‘𝑀) = 1)) |
14 | 2, 13 | sylbird 260 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0) → (♯‘𝑀) = 1)) |
15 | olc 865 | . . 3 ⊢ ((♯‘𝑀) = 1 → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) | |
16 | 14, 15 | syl6com 37 | . 2 ⊢ (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))) |
17 | rexnal 3094 | . . . 4 ⊢ (∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊‘𝑖) = (𝑊‘0) ↔ ¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0)) | |
18 | df-ne 2935 | . . . . . 6 ⊢ ((𝑊‘𝑖) ≠ (𝑊‘0) ↔ ¬ (𝑊‘𝑖) = (𝑊‘0)) | |
19 | 18 | bicomi 223 | . . . . 5 ⊢ (¬ (𝑊‘𝑖) = (𝑊‘0) ↔ (𝑊‘𝑖) ≠ (𝑊‘0)) |
20 | 19 | rexbii 3088 | . . . 4 ⊢ (∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊‘𝑖) = (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) |
21 | 17, 20 | bitr3i 277 | . . 3 ⊢ (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) |
22 | 10 | cshwshashnsame 17044 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → (♯‘𝑀) = (♯‘𝑊))) |
23 | orc 864 | . . . 4 ⊢ ((♯‘𝑀) = (♯‘𝑊) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) | |
24 | 22, 23 | syl6com 37 | . . 3 ⊢ (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))) |
25 | 21, 24 | sylbi 216 | . 2 ⊢ (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))) |
26 | 16, 25 | pm2.61i 182 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ∃wrex 3064 {crab 3426 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 0cc0 11109 1c1 11110 ≤ cle 11250 ℕcn 12213 ..^cfzo 13630 ♯chash 14293 Word cword 14468 repeatS creps 14722 cyclShift ccsh 14742 ℙcprime 16613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-disj 5107 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-oadd 8468 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-dju 9895 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-xnn0 12546 df-z 12560 df-uz 12824 df-rp 12978 df-fz 13488 df-fzo 13631 df-fl 13760 df-mod 13838 df-seq 13970 df-exp 14031 df-hash 14294 df-word 14469 df-concat 14525 df-substr 14595 df-pfx 14625 df-reps 14723 df-csh 14743 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-sum 15637 df-dvds 16203 df-gcd 16441 df-prm 16614 df-phi 16706 |
This theorem is referenced by: hashecclwwlkn1 29835 |
Copyright terms: Public domain | W3C validator |