![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwshash | Structured version Visualization version GIF version |
Description: If a word has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word or 1. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
Ref | Expression |
---|---|
cshwrepswhash1.m | ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} |
Ref | Expression |
---|---|
cshwshash | ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | repswsymballbi 13966 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0))) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0))) |
3 | prmnn 15835 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℙ → (♯‘𝑊) ∈ ℕ) | |
4 | 3 | nnge1d 11522 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℙ → 1 ≤ (♯‘𝑊)) |
5 | wrdsymb1 13739 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑊)) → (𝑊‘0) ∈ 𝑉) | |
6 | 4, 5 | sylan2 592 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊‘0) ∈ 𝑉) |
7 | 6 | adantr 481 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (𝑊‘0) ∈ 𝑉) |
8 | 3 | ad2antlr 723 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑊) ∈ ℕ) |
9 | simpr 485 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) | |
10 | cshwrepswhash1.m | . . . . . . 7 ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} | |
11 | 10 | cshwrepswhash1 16253 | . . . . . 6 ⊢ (((𝑊‘0) ∈ 𝑉 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑀) = 1) |
12 | 7, 8, 9, 11 | syl3anc 1362 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑀) = 1) |
13 | 12 | ex 413 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) → (♯‘𝑀) = 1)) |
14 | 2, 13 | sylbird 261 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0) → (♯‘𝑀) = 1)) |
15 | olc 863 | . . 3 ⊢ ((♯‘𝑀) = 1 → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) | |
16 | 14, 15 | syl6com 37 | . 2 ⊢ (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))) |
17 | rexnal 3200 | . . . 4 ⊢ (∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊‘𝑖) = (𝑊‘0) ↔ ¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0)) | |
18 | df-ne 2983 | . . . . . 6 ⊢ ((𝑊‘𝑖) ≠ (𝑊‘0) ↔ ¬ (𝑊‘𝑖) = (𝑊‘0)) | |
19 | 18 | bicomi 225 | . . . . 5 ⊢ (¬ (𝑊‘𝑖) = (𝑊‘0) ↔ (𝑊‘𝑖) ≠ (𝑊‘0)) |
20 | 19 | rexbii 3209 | . . . 4 ⊢ (∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊‘𝑖) = (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) |
21 | 17, 20 | bitr3i 278 | . . 3 ⊢ (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) |
22 | 10 | cshwshashnsame 16254 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → (♯‘𝑀) = (♯‘𝑊))) |
23 | orc 862 | . . . 4 ⊢ ((♯‘𝑀) = (♯‘𝑊) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) | |
24 | 22, 23 | syl6com 37 | . . 3 ⊢ (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))) |
25 | 21, 24 | sylbi 218 | . 2 ⊢ (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))) |
26 | 16, 25 | pm2.61i 183 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 = wceq 1520 ∈ wcel 2079 ≠ wne 2982 ∀wral 3103 ∃wrex 3104 {crab 3107 class class class wbr 4956 ‘cfv 6217 (class class class)co 7007 0cc0 10372 1c1 10373 ≤ cle 10511 ℕcn 11475 ..^cfzo 12872 ♯chash 13528 Word cword 13695 repeatS creps 13954 cyclShift ccsh 13974 ℙcprime 15832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-inf2 8939 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 ax-pre-sup 10450 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-fal 1533 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-disj 4925 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-se 5395 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-isom 6226 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-1o 7944 df-2o 7945 df-oadd 7948 df-er 8130 df-map 8249 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-sup 8742 df-inf 8743 df-oi 8810 df-dju 9165 df-card 9203 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-div 11135 df-nn 11476 df-2 11537 df-3 11538 df-n0 11735 df-xnn0 11805 df-z 11819 df-uz 12083 df-rp 12229 df-fz 12732 df-fzo 12873 df-fl 13000 df-mod 13076 df-seq 13208 df-exp 13268 df-hash 13529 df-word 13696 df-concat 13757 df-substr 13827 df-pfx 13857 df-reps 13955 df-csh 13975 df-cj 14280 df-re 14281 df-im 14282 df-sqrt 14416 df-abs 14417 df-clim 14667 df-sum 14865 df-dvds 15429 df-gcd 15665 df-prm 15833 df-phi 15920 |
This theorem is referenced by: hashecclwwlkn1 27531 |
Copyright terms: Public domain | W3C validator |