MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwshash Structured version   Visualization version   GIF version

Theorem cshwshash 17034
Description: If a word has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word or 1. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.)
Hypothesis
Ref Expression
cshwrepswhash1.m 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
Assertion
Ref Expression
cshwshash ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))
Distinct variable groups:   𝑛,𝑉,𝑤   𝑛,𝑊,𝑤
Allowed substitution hints:   𝑀(𝑤,𝑛)

Proof of Theorem cshwshash
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 repswsymballbi 14704 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
21adantr 480 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3 prmnn 16603 . . . . . . . . 9 ((♯‘𝑊) ∈ ℙ → (♯‘𝑊) ∈ ℕ)
43nnge1d 12194 . . . . . . . 8 ((♯‘𝑊) ∈ ℙ → 1 ≤ (♯‘𝑊))
5 wrdsymb1 14478 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑊)) → (𝑊‘0) ∈ 𝑉)
64, 5sylan2 593 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊‘0) ∈ 𝑉)
76adantr 480 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (𝑊‘0) ∈ 𝑉)
83ad2antlr 727 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
9 simpr 484 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))
10 cshwrepswhash1.m . . . . . . 7 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
1110cshwrepswhash1 17032 . . . . . 6 (((𝑊‘0) ∈ 𝑉 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑀) = 1)
127, 8, 9, 11syl3anc 1373 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (♯‘𝑀) = 1)
1312ex 412 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) → (♯‘𝑀) = 1))
142, 13sylbird 260 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → (♯‘𝑀) = 1))
15 olc 868 . . 3 ((♯‘𝑀) = 1 → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))
1614, 15syl6com 37 . 2 (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)))
17 rexnal 3081 . . . 4 (∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊𝑖) = (𝑊‘0) ↔ ¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
18 df-ne 2926 . . . . . 6 ((𝑊𝑖) ≠ (𝑊‘0) ↔ ¬ (𝑊𝑖) = (𝑊‘0))
1918bicomi 224 . . . . 5 (¬ (𝑊𝑖) = (𝑊‘0) ↔ (𝑊𝑖) ≠ (𝑊‘0))
2019rexbii 3076 . . . 4 (∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊𝑖) = (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))
2117, 20bitr3i 277 . . 3 (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))
2210cshwshashnsame 17033 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) → (♯‘𝑀) = (♯‘𝑊)))
23 orc 867 . . . 4 ((♯‘𝑀) = (♯‘𝑊) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))
2422, 23syl6com 37 . . 3 (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)))
2521, 24sylbi 217 . 2 (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)))
2616, 25pm2.61i 182 1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396   class class class wbr 5095  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029  cle 11169  cn 12146  ..^cfzo 13575  chash 14255  Word cword 14438   repeatS creps 14692   cyclShift ccsh 14712  cprime 16600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-word 14439  df-concat 14496  df-substr 14566  df-pfx 14596  df-reps 14693  df-csh 14713  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-dvds 16182  df-gcd 16424  df-prm 16601  df-phi 16695
This theorem is referenced by:  hashecclwwlkn1  30039
  Copyright terms: Public domain W3C validator