| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsinfd | Structured version Visualization version GIF version | ||
| Description: In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 is infinite. This follows from applying unirnffid 9237 to the map given in acsmap2d 18467. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsmap2d.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| acsmap2d.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| acsmap2d.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
| acsmap2d.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| acsmap2d.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
| acsmap2d.6 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| acsinfd.7 | ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) |
| Ref | Expression |
|---|---|
| acsinfd | ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmap2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | acsmap2d.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | acsmap2d.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 4 | acsmap2d.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 5 | acsmap2d.5 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
| 6 | acsmap2d.6 | . . 3 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
| 7 | 1, 2, 3, 4, 5, 6 | acsmap2d 18467 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
| 8 | simplrr 777 | . . . 4 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑆 = ∪ ran 𝑓) | |
| 9 | simplrl 776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)) | |
| 10 | inss2 4187 | . . . . . 6 ⊢ (𝒫 𝑆 ∩ Fin) ⊆ Fin | |
| 11 | fss 6673 | . . . . . 6 ⊢ ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ⊆ Fin) → 𝑓:𝑇⟶Fin) | |
| 12 | 9, 10, 11 | sylancl 586 | . . . . 5 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑓:𝑇⟶Fin) |
| 13 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑇 ∈ Fin) | |
| 14 | 12, 13 | unirnffid 9237 | . . . 4 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → ∪ ran 𝑓 ∈ Fin) |
| 15 | 8, 14 | eqeltrd 2831 | . . 3 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑆 ∈ Fin) |
| 16 | acsinfd.7 | . . . 4 ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) | |
| 17 | 16 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → ¬ 𝑆 ∈ Fin) |
| 18 | 15, 17 | pm2.65da 816 | . 2 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → ¬ 𝑇 ∈ Fin) |
| 19 | 7, 18 | exlimddv 1936 | 1 ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4549 ∪ cuni 4858 ran crn 5620 ⟶wf 6483 ‘cfv 6487 Fincfn 8875 mrClscmrc 17491 mrIndcmri 17492 ACScacs 17493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-reg 9484 ax-inf2 9537 ax-ac2 10360 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-r1 9663 df-rank 9664 df-card 9838 df-ac 10013 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-struct 17064 df-slot 17099 df-ndx 17111 df-base 17127 df-tset 17186 df-ple 17187 df-ocomp 17188 df-mre 17494 df-mrc 17495 df-mri 17496 df-acs 17497 df-proset 18206 df-drs 18207 df-poset 18225 df-ipo 18440 |
| This theorem is referenced by: acsdomd 18469 acsinfdimd 18470 |
| Copyright terms: Public domain | W3C validator |