![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsinfd | Structured version Visualization version GIF version |
Description: In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 is infinite. This follows from applying unirnffid 9369 to the map given in acsmap2d 18547. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsmap2d.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
acsmap2d.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
acsmap2d.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
acsmap2d.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
acsmap2d.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
acsmap2d.6 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
acsinfd.7 | ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) |
Ref | Expression |
---|---|
acsinfd | ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsmap2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
2 | acsmap2d.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | acsmap2d.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | acsmap2d.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
5 | acsmap2d.5 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
6 | acsmap2d.6 | . . 3 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
7 | 1, 2, 3, 4, 5, 6 | acsmap2d 18547 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
8 | simplrr 777 | . . . 4 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑆 = ∪ ran 𝑓) | |
9 | simplrl 776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)) | |
10 | inss2 4230 | . . . . . 6 ⊢ (𝒫 𝑆 ∩ Fin) ⊆ Fin | |
11 | fss 6739 | . . . . . 6 ⊢ ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ⊆ Fin) → 𝑓:𝑇⟶Fin) | |
12 | 9, 10, 11 | sylancl 585 | . . . . 5 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑓:𝑇⟶Fin) |
13 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑇 ∈ Fin) | |
14 | 12, 13 | unirnffid 9369 | . . . 4 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → ∪ ran 𝑓 ∈ Fin) |
15 | 8, 14 | eqeltrd 2829 | . . 3 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑆 ∈ Fin) |
16 | acsinfd.7 | . . . 4 ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) | |
17 | 16 | ad2antrr 725 | . . 3 ⊢ (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) ∧ 𝑇 ∈ Fin) → ¬ 𝑆 ∈ Fin) |
18 | 15, 17 | pm2.65da 816 | . 2 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → ¬ 𝑇 ∈ Fin) |
19 | 7, 18 | exlimddv 1931 | 1 ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4603 ∪ cuni 4908 ran crn 5679 ⟶wf 6544 ‘cfv 6548 Fincfn 8964 mrClscmrc 17563 mrIndcmri 17564 ACScacs 17565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-reg 9616 ax-inf2 9665 ax-ac2 10487 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-r1 9788 df-rank 9789 df-card 9963 df-ac 10140 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-fz 13518 df-struct 17116 df-slot 17151 df-ndx 17163 df-base 17181 df-tset 17252 df-ple 17253 df-ocomp 17254 df-mre 17566 df-mrc 17567 df-mri 17568 df-acs 17569 df-proset 18287 df-drs 18288 df-poset 18305 df-ipo 18520 |
This theorem is referenced by: acsdomd 18549 acsinfdimd 18550 |
Copyright terms: Public domain | W3C validator |