MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsinfd Structured version   Visualization version   GIF version

Theorem acsinfd 18626
Description: In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 is infinite. This follows from applying unirnffid 9415 to the map given in acsmap2d 18625. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsmap2d.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsmap2d.2 𝑁 = (mrCls‘𝐴)
acsmap2d.3 𝐼 = (mrInd‘𝐴)
acsmap2d.4 (𝜑𝑆𝐼)
acsmap2d.5 (𝜑𝑇𝑋)
acsmap2d.6 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
acsinfd.7 (𝜑 → ¬ 𝑆 ∈ Fin)
Assertion
Ref Expression
acsinfd (𝜑 → ¬ 𝑇 ∈ Fin)

Proof of Theorem acsinfd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 acsmap2d.1 . . 3 (𝜑𝐴 ∈ (ACS‘𝑋))
2 acsmap2d.2 . . 3 𝑁 = (mrCls‘𝐴)
3 acsmap2d.3 . . 3 𝐼 = (mrInd‘𝐴)
4 acsmap2d.4 . . 3 (𝜑𝑆𝐼)
5 acsmap2d.5 . . 3 (𝜑𝑇𝑋)
6 acsmap2d.6 . . 3 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
71, 2, 3, 4, 5, 6acsmap2d 18625 . 2 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓))
8 simplrr 777 . . . 4 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑆 = ran 𝑓)
9 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin))
10 inss2 4259 . . . . . 6 (𝒫 𝑆 ∩ Fin) ⊆ Fin
11 fss 6763 . . . . . 6 ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ⊆ Fin) → 𝑓:𝑇⟶Fin)
129, 10, 11sylancl 585 . . . . 5 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑓:𝑇⟶Fin)
13 simpr 484 . . . . 5 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑇 ∈ Fin)
1412, 13unirnffid 9415 . . . 4 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) ∧ 𝑇 ∈ Fin) → ran 𝑓 ∈ Fin)
158, 14eqeltrd 2844 . . 3 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) ∧ 𝑇 ∈ Fin) → 𝑆 ∈ Fin)
16 acsinfd.7 . . . 4 (𝜑 → ¬ 𝑆 ∈ Fin)
1716ad2antrr 725 . . 3 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) ∧ 𝑇 ∈ Fin) → ¬ 𝑆 ∈ Fin)
1815, 17pm2.65da 816 . 2 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) → ¬ 𝑇 ∈ Fin)
197, 18exlimddv 1934 1 (𝜑 → ¬ 𝑇 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931  ran crn 5701  wf 6569  cfv 6573  Fincfn 9003  mrClscmrc 17641  mrIndcmri 17642  ACScacs 17643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-r1 9833  df-rank 9834  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-tset 17330  df-ple 17331  df-ocomp 17332  df-mre 17644  df-mrc 17645  df-mri 17646  df-acs 17647  df-proset 18365  df-drs 18366  df-poset 18383  df-ipo 18598
This theorem is referenced by:  acsdomd  18627  acsinfdimd  18628
  Copyright terms: Public domain W3C validator