MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdg0v Structured version   Visualization version   GIF version

Theorem vtxdg0v 29437
Description: The degree of a vertex in the null graph is zero (or anything else), because there are no vertices. (Contributed by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
vtxdgf.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
vtxdg0v ((𝐺 = ∅ ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0)

Proof of Theorem vtxdg0v
StepHypRef Expression
1 vtxdgf.v . . . . 5 𝑉 = (Vtx‘𝐺)
21eleq2i 2820 . . . 4 (𝑈𝑉𝑈 ∈ (Vtx‘𝐺))
3 fveq2 6826 . . . . . 6 (𝐺 = ∅ → (Vtx‘𝐺) = (Vtx‘∅))
4 vtxval0 29002 . . . . . 6 (Vtx‘∅) = ∅
53, 4eqtrdi 2780 . . . . 5 (𝐺 = ∅ → (Vtx‘𝐺) = ∅)
65eleq2d 2814 . . . 4 (𝐺 = ∅ → (𝑈 ∈ (Vtx‘𝐺) ↔ 𝑈 ∈ ∅))
72, 6bitrid 283 . . 3 (𝐺 = ∅ → (𝑈𝑉𝑈 ∈ ∅))
8 noel 4291 . . . 4 ¬ 𝑈 ∈ ∅
98pm2.21i 119 . . 3 (𝑈 ∈ ∅ → ((VtxDeg‘𝐺)‘𝑈) = 0)
107, 9biimtrdi 253 . 2 (𝐺 = ∅ → (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = 0))
1110imp 406 1 ((𝐺 = ∅ ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4286  cfv 6486  0cc0 11028  Vtxcvtx 28959  VtxDegcvtxdg 29429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12147  df-slot 17111  df-ndx 17123  df-base 17139  df-vtx 28961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator