Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdg0v | Structured version Visualization version GIF version |
Description: The degree of a vertex in the null graph is zero (or anything else), because there are no vertices. (Contributed by AV, 11-Dec-2020.) |
Ref | Expression |
---|---|
vtxdgf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
vtxdg0v | ⊢ ((𝐺 = ∅ ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdgf.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | eleq2i 2830 | . . . 4 ⊢ (𝑈 ∈ 𝑉 ↔ 𝑈 ∈ (Vtx‘𝐺)) |
3 | fveq2 6766 | . . . . . 6 ⊢ (𝐺 = ∅ → (Vtx‘𝐺) = (Vtx‘∅)) | |
4 | vtxval0 27419 | . . . . . 6 ⊢ (Vtx‘∅) = ∅ | |
5 | 3, 4 | eqtrdi 2794 | . . . . 5 ⊢ (𝐺 = ∅ → (Vtx‘𝐺) = ∅) |
6 | 5 | eleq2d 2824 | . . . 4 ⊢ (𝐺 = ∅ → (𝑈 ∈ (Vtx‘𝐺) ↔ 𝑈 ∈ ∅)) |
7 | 2, 6 | syl5bb 283 | . . 3 ⊢ (𝐺 = ∅ → (𝑈 ∈ 𝑉 ↔ 𝑈 ∈ ∅)) |
8 | noel 4264 | . . . 4 ⊢ ¬ 𝑈 ∈ ∅ | |
9 | 8 | pm2.21i 119 | . . 3 ⊢ (𝑈 ∈ ∅ → ((VtxDeg‘𝐺)‘𝑈) = 0) |
10 | 7, 9 | syl6bi 252 | . 2 ⊢ (𝐺 = ∅ → (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = 0)) |
11 | 10 | imp 407 | 1 ⊢ ((𝐺 = ∅ ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∅c0 4256 ‘cfv 6426 0cc0 10881 Vtxcvtx 27376 VtxDegcvtxdg 27842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-1cn 10939 ax-addcl 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-om 7703 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-nn 11984 df-slot 16893 df-ndx 16905 df-base 16923 df-vtx 27378 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |