MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdg0v Structured version   Visualization version   GIF version

Theorem vtxdg0v 27249
Description: The degree of a vertex in the null graph is zero (or anything else), because there are no vertices. (Contributed by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
vtxdgf.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
vtxdg0v ((𝐺 = ∅ ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0)

Proof of Theorem vtxdg0v
StepHypRef Expression
1 vtxdgf.v . . . . 5 𝑉 = (Vtx‘𝐺)
21eleq2i 2904 . . . 4 (𝑈𝑉𝑈 ∈ (Vtx‘𝐺))
3 fveq2 6664 . . . . . 6 (𝐺 = ∅ → (Vtx‘𝐺) = (Vtx‘∅))
4 vtxval0 26818 . . . . . 6 (Vtx‘∅) = ∅
53, 4syl6eq 2872 . . . . 5 (𝐺 = ∅ → (Vtx‘𝐺) = ∅)
65eleq2d 2898 . . . 4 (𝐺 = ∅ → (𝑈 ∈ (Vtx‘𝐺) ↔ 𝑈 ∈ ∅))
72, 6syl5bb 285 . . 3 (𝐺 = ∅ → (𝑈𝑉𝑈 ∈ ∅))
8 noel 4295 . . . 4 ¬ 𝑈 ∈ ∅
98pm2.21i 119 . . 3 (𝑈 ∈ ∅ → ((VtxDeg‘𝐺)‘𝑈) = 0)
107, 9syl6bi 255 . 2 (𝐺 = ∅ → (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = 0))
1110imp 409 1 ((𝐺 = ∅ ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  c0 4290  cfv 6349  0cc0 10531  Vtxcvtx 26775  VtxDegcvtxdg 27241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357  df-slot 16481  df-base 16483  df-vtx 26777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator