Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdg0v | Structured version Visualization version GIF version |
Description: The degree of a vertex in the null graph is zero (or anything else), because there are no vertices. (Contributed by AV, 11-Dec-2020.) |
Ref | Expression |
---|---|
vtxdgf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
vtxdg0v | ⊢ ((𝐺 = ∅ ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdgf.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | eleq2i 2830 | . . . 4 ⊢ (𝑈 ∈ 𝑉 ↔ 𝑈 ∈ (Vtx‘𝐺)) |
3 | fveq2 6756 | . . . . . 6 ⊢ (𝐺 = ∅ → (Vtx‘𝐺) = (Vtx‘∅)) | |
4 | vtxval0 27312 | . . . . . 6 ⊢ (Vtx‘∅) = ∅ | |
5 | 3, 4 | eqtrdi 2795 | . . . . 5 ⊢ (𝐺 = ∅ → (Vtx‘𝐺) = ∅) |
6 | 5 | eleq2d 2824 | . . . 4 ⊢ (𝐺 = ∅ → (𝑈 ∈ (Vtx‘𝐺) ↔ 𝑈 ∈ ∅)) |
7 | 2, 6 | syl5bb 282 | . . 3 ⊢ (𝐺 = ∅ → (𝑈 ∈ 𝑉 ↔ 𝑈 ∈ ∅)) |
8 | noel 4261 | . . . 4 ⊢ ¬ 𝑈 ∈ ∅ | |
9 | 8 | pm2.21i 119 | . . 3 ⊢ (𝑈 ∈ ∅ → ((VtxDeg‘𝐺)‘𝑈) = 0) |
10 | 7, 9 | syl6bi 252 | . 2 ⊢ (𝐺 = ∅ → (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = 0)) |
11 | 10 | imp 406 | 1 ⊢ ((𝐺 = ∅ ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 ‘cfv 6418 0cc0 10802 Vtxcvtx 27269 VtxDegcvtxdg 27735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-slot 16811 df-ndx 16823 df-base 16841 df-vtx 27271 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |