| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdg0v | Structured version Visualization version GIF version | ||
| Description: The degree of a vertex in the null graph is zero (or anything else), because there are no vertices. (Contributed by AV, 11-Dec-2020.) |
| Ref | Expression |
|---|---|
| vtxdgf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| vtxdg0v | ⊢ ((𝐺 = ∅ ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgf.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | eleq2i 2825 | . . . 4 ⊢ (𝑈 ∈ 𝑉 ↔ 𝑈 ∈ (Vtx‘𝐺)) |
| 3 | fveq2 6828 | . . . . . 6 ⊢ (𝐺 = ∅ → (Vtx‘𝐺) = (Vtx‘∅)) | |
| 4 | vtxval0 29019 | . . . . . 6 ⊢ (Vtx‘∅) = ∅ | |
| 5 | 3, 4 | eqtrdi 2784 | . . . . 5 ⊢ (𝐺 = ∅ → (Vtx‘𝐺) = ∅) |
| 6 | 5 | eleq2d 2819 | . . . 4 ⊢ (𝐺 = ∅ → (𝑈 ∈ (Vtx‘𝐺) ↔ 𝑈 ∈ ∅)) |
| 7 | 2, 6 | bitrid 283 | . . 3 ⊢ (𝐺 = ∅ → (𝑈 ∈ 𝑉 ↔ 𝑈 ∈ ∅)) |
| 8 | noel 4287 | . . . 4 ⊢ ¬ 𝑈 ∈ ∅ | |
| 9 | 8 | pm2.21i 119 | . . 3 ⊢ (𝑈 ∈ ∅ → ((VtxDeg‘𝐺)‘𝑈) = 0) |
| 10 | 7, 9 | biimtrdi 253 | . 2 ⊢ (𝐺 = ∅ → (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = 0)) |
| 11 | 10 | imp 406 | 1 ⊢ ((𝐺 = ∅ ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∅c0 4282 ‘cfv 6486 0cc0 11013 Vtxcvtx 28976 VtxDegcvtxdg 29446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-slot 17095 df-ndx 17107 df-base 17123 df-vtx 28978 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |