Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weiunfrlem Structured version   Visualization version   GIF version

Theorem weiunfrlem 36440
Description: Lemma for weiunfr 36443. (Contributed by Matthew House, 23-Aug-2025.)
Hypotheses
Ref Expression
weiun.1 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
weiun.2 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
weiunlem2.3 (𝜑𝑅 We 𝐴)
weiunlem2.4 (𝜑𝑅 Se 𝐴)
weiunfrlem.5 𝐸 = (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
weiunfrlem.6 (𝜑𝑟 𝑥𝐴 𝐵)
weiunfrlem.7 (𝜑𝑟 ≠ ∅)
Assertion
Ref Expression
weiunfrlem (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸 ∧ ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸))
Distinct variable groups:   𝜑,𝑡   𝐴,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤,𝑥   𝑦,𝐴,𝑧,𝑥   𝐵,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤   𝑦,𝐵,𝑧   𝑡,𝐸   𝐹,𝑝,𝑞,𝑟,𝑡,𝑦,𝑧   𝑅,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤   𝑦,𝑅,𝑧   𝑆,𝑝,𝑞,𝑟,𝑡,𝑦,𝑧   𝑇,𝑝,𝑞,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑟,𝑞,𝑝)   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑤,𝑣,𝑢)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑟,𝑞,𝑝)   𝐹(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem weiunfrlem
Dummy variables 𝑛 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weiunlem2.3 . . . . . . 7 (𝜑𝑅 We 𝐴)
2 weiunlem2.4 . . . . . . 7 (𝜑𝑅 Se 𝐴)
3 weiun.1 . . . . . . . . . 10 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
4 weiun.2 . . . . . . . . . 10 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
53, 4, 1, 2weiunlem2 36439 . . . . . . . . 9 (𝜑 → (𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵 ∧ ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡)))
65simp1d 1142 . . . . . . . 8 (𝜑𝐹: 𝑥𝐴 𝐵𝐴)
76fimassd 6737 . . . . . . 7 (𝜑 → (𝐹𝑟) ⊆ 𝐴)
8 weiunfrlem.6 . . . . . . . . . . 11 (𝜑𝑟 𝑥𝐴 𝐵)
96fdmd 6726 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑥𝐴 𝐵)
108, 9sseqtrrd 4001 . . . . . . . . . 10 (𝜑𝑟 ⊆ dom 𝐹)
11 sseqin2 4203 . . . . . . . . . 10 (𝑟 ⊆ dom 𝐹 ↔ (dom 𝐹𝑟) = 𝑟)
1210, 11sylib 218 . . . . . . . . 9 (𝜑 → (dom 𝐹𝑟) = 𝑟)
13 weiunfrlem.7 . . . . . . . . 9 (𝜑𝑟 ≠ ∅)
1412, 13eqnetrd 2998 . . . . . . . 8 (𝜑 → (dom 𝐹𝑟) ≠ ∅)
1514imadisjlnd 6079 . . . . . . 7 (𝜑 → (𝐹𝑟) ≠ ∅)
16 wereu2 5662 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ ((𝐹𝑟) ⊆ 𝐴 ∧ (𝐹𝑟) ≠ ∅)) → ∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
171, 2, 7, 15, 16syl22anc 838 . . . . . 6 (𝜑 → ∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
18 riotacl2 7386 . . . . . 6 (∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝 → (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝) ∈ {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝})
1917, 18syl 17 . . . . 5 (𝜑 → (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝) ∈ {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝})
20 weiunfrlem.5 . . . . 5 𝐸 = (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
21 simpr 484 . . . . . . . . 9 ((𝑛 = 𝑝𝑜 = 𝑞) → 𝑜 = 𝑞)
22 simpl 482 . . . . . . . . 9 ((𝑛 = 𝑝𝑜 = 𝑞) → 𝑛 = 𝑝)
2321, 22breq12d 5136 . . . . . . . 8 ((𝑛 = 𝑝𝑜 = 𝑞) → (𝑜𝑅𝑛𝑞𝑅𝑝))
2423notbid 318 . . . . . . 7 ((𝑛 = 𝑝𝑜 = 𝑞) → (¬ 𝑜𝑅𝑛 ↔ ¬ 𝑞𝑅𝑝))
2524cbvraldva 3225 . . . . . 6 (𝑛 = 𝑝 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛 ↔ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝))
2625cbvrabv 3430 . . . . 5 {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛} = {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝}
2719, 20, 263eltr4g 2850 . . . 4 (𝜑𝐸 ∈ {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛})
28 breq2 5127 . . . . . . 7 (𝑛 = 𝐸 → (𝑜𝑅𝑛𝑜𝑅𝐸))
2928notbid 318 . . . . . 6 (𝑛 = 𝐸 → (¬ 𝑜𝑅𝑛 ↔ ¬ 𝑜𝑅𝐸))
3029ralbidv 3165 . . . . 5 (𝑛 = 𝐸 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛 ↔ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3130elrab 3675 . . . 4 (𝐸 ∈ {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛} ↔ (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3227, 31sylib 218 . . 3 (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3332simpld 494 . 2 (𝜑𝐸 ∈ (𝐹𝑟))
3432simprd 495 . . 3 (𝜑 → ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸)
356ffnd 6717 . . . 4 (𝜑𝐹 Fn 𝑥𝐴 𝐵)
36 breq1 5126 . . . . . 6 (𝑜 = (𝐹𝑡) → (𝑜𝑅𝐸 ↔ (𝐹𝑡)𝑅𝐸))
3736notbid 318 . . . . 5 (𝑜 = (𝐹𝑡) → (¬ 𝑜𝑅𝐸 ↔ ¬ (𝐹𝑡)𝑅𝐸))
3837ralima 7239 . . . 4 ((𝐹 Fn 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵) → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸 ↔ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸))
3935, 8, 38syl2anc 584 . . 3 (𝜑 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸 ↔ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸))
4034, 39mpbid 232 . 2 (𝜑 → ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸)
41 simpr 484 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡 ∈ (𝑟𝐸 / 𝑥𝐵))
4241elin1d 4184 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡𝑟)
43 rspa 3234 . . . . 5 ((∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸𝑡𝑟) → ¬ (𝐹𝑡)𝑅𝐸)
4440, 42, 43syl2an2r 685 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ¬ (𝐹𝑡)𝑅𝐸)
45 csbeq1 3882 . . . . . . 7 (𝑠 = 𝐸𝑠 / 𝑥𝐵 = 𝐸 / 𝑥𝐵)
46 breq1 5126 . . . . . . . 8 (𝑠 = 𝐸 → (𝑠𝑅(𝐹𝑡) ↔ 𝐸𝑅(𝐹𝑡)))
4746notbid 318 . . . . . . 7 (𝑠 = 𝐸 → (¬ 𝑠𝑅(𝐹𝑡) ↔ ¬ 𝐸𝑅(𝐹𝑡)))
4845, 47raleqbidv 3329 . . . . . 6 (𝑠 = 𝐸 → (∀𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡) ↔ ∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡)))
495simp3d 1144 . . . . . 6 (𝜑 → ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡))
507, 33sseldd 3964 . . . . . 6 (𝜑𝐸𝐴)
5148, 49, 50rspcdva 3606 . . . . 5 (𝜑 → ∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡))
5241elin2d 4185 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡𝐸 / 𝑥𝐵)
53 rspa 3234 . . . . 5 ((∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡) ∧ 𝑡𝐸 / 𝑥𝐵) → ¬ 𝐸𝑅(𝐹𝑡))
5451, 52, 53syl2an2r 685 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ¬ 𝐸𝑅(𝐹𝑡))
55 weso 5656 . . . . . . 7 (𝑅 We 𝐴𝑅 Or 𝐴)
561, 55syl 17 . . . . . 6 (𝜑𝑅 Or 𝐴)
5756adantr 480 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑅 Or 𝐴)
586adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝐹: 𝑥𝐴 𝐵𝐴)
598adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑟 𝑥𝐴 𝐵)
6059, 42sseldd 3964 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡 𝑥𝐴 𝐵)
6158, 60ffvelcdmd 7085 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → (𝐹𝑡) ∈ 𝐴)
6250adantr 480 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝐸𝐴)
63 sotrieq2 5604 . . . . 5 ((𝑅 Or 𝐴 ∧ ((𝐹𝑡) ∈ 𝐴𝐸𝐴)) → ((𝐹𝑡) = 𝐸 ↔ (¬ (𝐹𝑡)𝑅𝐸 ∧ ¬ 𝐸𝑅(𝐹𝑡))))
6457, 61, 62, 63syl12anc 836 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ((𝐹𝑡) = 𝐸 ↔ (¬ (𝐹𝑡)𝑅𝐸 ∧ ¬ 𝐸𝑅(𝐹𝑡))))
6544, 54, 64mpbir2and 713 . . 3 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → (𝐹𝑡) = 𝐸)
6665ralrimiva 3133 . 2 (𝜑 → ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸)
6733, 40, 663jca 1128 1 (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸 ∧ ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  ∃!wreu 3361  {crab 3419  csb 3879  cin 3930  wss 3931  c0 4313   ciun 4971   class class class wbr 5123  {copab 5185  cmpt 5205   Or wor 5571   Se wse 5615   We wwe 5616  dom cdm 5665  cima 5668   Fn wfn 6536  wf 6537  cfv 6541  crio 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-riota 7370
This theorem is referenced by:  weiunfr  36443
  Copyright terms: Public domain W3C validator