Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weiunfrlem Structured version   Visualization version   GIF version

Theorem weiunfrlem 36580
Description: Lemma for weiunfr 36583. (Contributed by Matthew House, 23-Aug-2025.)
Hypotheses
Ref Expression
weiun.1 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
weiun.2 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
weiunlem2.3 (𝜑𝑅 We 𝐴)
weiunlem2.4 (𝜑𝑅 Se 𝐴)
weiunfrlem.5 𝐸 = (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
weiunfrlem.6 (𝜑𝑟 𝑥𝐴 𝐵)
weiunfrlem.7 (𝜑𝑟 ≠ ∅)
Assertion
Ref Expression
weiunfrlem (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸 ∧ ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸))
Distinct variable groups:   𝜑,𝑡   𝐴,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤,𝑥   𝑦,𝐴,𝑧,𝑥   𝐵,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤   𝑦,𝐵,𝑧   𝑡,𝐸   𝐹,𝑝,𝑞,𝑟,𝑡,𝑦,𝑧   𝑅,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤   𝑦,𝑅,𝑧   𝑆,𝑝,𝑞,𝑟,𝑡,𝑦,𝑧   𝑇,𝑝,𝑞,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑟,𝑞,𝑝)   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑤,𝑣,𝑢)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑟,𝑞,𝑝)   𝐹(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem weiunfrlem
Dummy variables 𝑛 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weiunlem2.3 . . . . . . 7 (𝜑𝑅 We 𝐴)
2 weiunlem2.4 . . . . . . 7 (𝜑𝑅 Se 𝐴)
3 weiun.1 . . . . . . . . . 10 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
4 weiun.2 . . . . . . . . . 10 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
53, 4, 1, 2weiunlem2 36579 . . . . . . . . 9 (𝜑 → (𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵 ∧ ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡)))
65simp1d 1142 . . . . . . . 8 (𝜑𝐹: 𝑥𝐴 𝐵𝐴)
76fimassd 6680 . . . . . . 7 (𝜑 → (𝐹𝑟) ⊆ 𝐴)
8 weiunfrlem.6 . . . . . . . . . . 11 (𝜑𝑟 𝑥𝐴 𝐵)
96fdmd 6669 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑥𝐴 𝐵)
108, 9sseqtrrd 3968 . . . . . . . . . 10 (𝜑𝑟 ⊆ dom 𝐹)
11 sseqin2 4172 . . . . . . . . . 10 (𝑟 ⊆ dom 𝐹 ↔ (dom 𝐹𝑟) = 𝑟)
1210, 11sylib 218 . . . . . . . . 9 (𝜑 → (dom 𝐹𝑟) = 𝑟)
13 weiunfrlem.7 . . . . . . . . 9 (𝜑𝑟 ≠ ∅)
1412, 13eqnetrd 2996 . . . . . . . 8 (𝜑 → (dom 𝐹𝑟) ≠ ∅)
1514imadisjlnd 6037 . . . . . . 7 (𝜑 → (𝐹𝑟) ≠ ∅)
16 wereu2 5618 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ ((𝐹𝑟) ⊆ 𝐴 ∧ (𝐹𝑟) ≠ ∅)) → ∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
171, 2, 7, 15, 16syl22anc 838 . . . . . 6 (𝜑 → ∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
18 riotacl2 7328 . . . . . 6 (∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝 → (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝) ∈ {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝})
1917, 18syl 17 . . . . 5 (𝜑 → (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝) ∈ {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝})
20 weiunfrlem.5 . . . . 5 𝐸 = (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
21 simpr 484 . . . . . . . . 9 ((𝑛 = 𝑝𝑜 = 𝑞) → 𝑜 = 𝑞)
22 simpl 482 . . . . . . . . 9 ((𝑛 = 𝑝𝑜 = 𝑞) → 𝑛 = 𝑝)
2321, 22breq12d 5108 . . . . . . . 8 ((𝑛 = 𝑝𝑜 = 𝑞) → (𝑜𝑅𝑛𝑞𝑅𝑝))
2423notbid 318 . . . . . . 7 ((𝑛 = 𝑝𝑜 = 𝑞) → (¬ 𝑜𝑅𝑛 ↔ ¬ 𝑞𝑅𝑝))
2524cbvraldva 3213 . . . . . 6 (𝑛 = 𝑝 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛 ↔ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝))
2625cbvrabv 3406 . . . . 5 {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛} = {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝}
2719, 20, 263eltr4g 2850 . . . 4 (𝜑𝐸 ∈ {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛})
28 breq2 5099 . . . . . . 7 (𝑛 = 𝐸 → (𝑜𝑅𝑛𝑜𝑅𝐸))
2928notbid 318 . . . . . 6 (𝑛 = 𝐸 → (¬ 𝑜𝑅𝑛 ↔ ¬ 𝑜𝑅𝐸))
3029ralbidv 3156 . . . . 5 (𝑛 = 𝐸 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛 ↔ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3130elrab 3643 . . . 4 (𝐸 ∈ {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛} ↔ (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3227, 31sylib 218 . . 3 (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3332simpld 494 . 2 (𝜑𝐸 ∈ (𝐹𝑟))
3432simprd 495 . . 3 (𝜑 → ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸)
356ffnd 6660 . . . 4 (𝜑𝐹 Fn 𝑥𝐴 𝐵)
36 breq1 5098 . . . . . 6 (𝑜 = (𝐹𝑡) → (𝑜𝑅𝐸 ↔ (𝐹𝑡)𝑅𝐸))
3736notbid 318 . . . . 5 (𝑜 = (𝐹𝑡) → (¬ 𝑜𝑅𝐸 ↔ ¬ (𝐹𝑡)𝑅𝐸))
3837ralima 7180 . . . 4 ((𝐹 Fn 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵) → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸 ↔ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸))
3935, 8, 38syl2anc 584 . . 3 (𝜑 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸 ↔ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸))
4034, 39mpbid 232 . 2 (𝜑 → ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸)
41 simpr 484 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡 ∈ (𝑟𝐸 / 𝑥𝐵))
4241elin1d 4153 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡𝑟)
43 rspa 3222 . . . . 5 ((∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸𝑡𝑟) → ¬ (𝐹𝑡)𝑅𝐸)
4440, 42, 43syl2an2r 685 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ¬ (𝐹𝑡)𝑅𝐸)
45 csbeq1 3849 . . . . . . 7 (𝑠 = 𝐸𝑠 / 𝑥𝐵 = 𝐸 / 𝑥𝐵)
46 breq1 5098 . . . . . . . 8 (𝑠 = 𝐸 → (𝑠𝑅(𝐹𝑡) ↔ 𝐸𝑅(𝐹𝑡)))
4746notbid 318 . . . . . . 7 (𝑠 = 𝐸 → (¬ 𝑠𝑅(𝐹𝑡) ↔ ¬ 𝐸𝑅(𝐹𝑡)))
4845, 47raleqbidv 3313 . . . . . 6 (𝑠 = 𝐸 → (∀𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡) ↔ ∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡)))
495simp3d 1144 . . . . . 6 (𝜑 → ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡))
507, 33sseldd 3931 . . . . . 6 (𝜑𝐸𝐴)
5148, 49, 50rspcdva 3574 . . . . 5 (𝜑 → ∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡))
5241elin2d 4154 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡𝐸 / 𝑥𝐵)
53 rspa 3222 . . . . 5 ((∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡) ∧ 𝑡𝐸 / 𝑥𝐵) → ¬ 𝐸𝑅(𝐹𝑡))
5451, 52, 53syl2an2r 685 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ¬ 𝐸𝑅(𝐹𝑡))
55 weso 5612 . . . . . . 7 (𝑅 We 𝐴𝑅 Or 𝐴)
561, 55syl 17 . . . . . 6 (𝜑𝑅 Or 𝐴)
5756adantr 480 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑅 Or 𝐴)
586adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝐹: 𝑥𝐴 𝐵𝐴)
598adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑟 𝑥𝐴 𝐵)
6059, 42sseldd 3931 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡 𝑥𝐴 𝐵)
6158, 60ffvelcdmd 7027 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → (𝐹𝑡) ∈ 𝐴)
6250adantr 480 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝐸𝐴)
63 sotrieq2 5561 . . . . 5 ((𝑅 Or 𝐴 ∧ ((𝐹𝑡) ∈ 𝐴𝐸𝐴)) → ((𝐹𝑡) = 𝐸 ↔ (¬ (𝐹𝑡)𝑅𝐸 ∧ ¬ 𝐸𝑅(𝐹𝑡))))
6457, 61, 62, 63syl12anc 836 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ((𝐹𝑡) = 𝐸 ↔ (¬ (𝐹𝑡)𝑅𝐸 ∧ ¬ 𝐸𝑅(𝐹𝑡))))
6544, 54, 64mpbir2and 713 . . 3 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → (𝐹𝑡) = 𝐸)
6665ralrimiva 3125 . 2 (𝜑 → ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸)
6733, 40, 663jca 1128 1 (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸 ∧ ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  ∃!wreu 3345  {crab 3396  csb 3846  cin 3897  wss 3898  c0 4282   ciun 4943   class class class wbr 5095  {copab 5157  cmpt 5176   Or wor 5528   Se wse 5572   We wwe 5573  dom cdm 5621  cima 5624   Fn wfn 6484  wf 6485  cfv 6489  crio 7311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-riota 7312
This theorem is referenced by:  weiunfr  36583
  Copyright terms: Public domain W3C validator