Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weiunfrlem Structured version   Visualization version   GIF version

Theorem weiunfrlem 36425
Description: Lemma for weiunfr 36428. (Contributed by Matthew House, 23-Aug-2025.)
Hypotheses
Ref Expression
weiun.1 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
weiun.2 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
weiunlem2.3 (𝜑𝑅 We 𝐴)
weiunlem2.4 (𝜑𝑅 Se 𝐴)
weiunfrlem.5 𝐸 = (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
weiunfrlem.6 (𝜑𝑟 𝑥𝐴 𝐵)
weiunfrlem.7 (𝜑𝑟 ≠ ∅)
Assertion
Ref Expression
weiunfrlem (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸 ∧ ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸))
Distinct variable groups:   𝜑,𝑡   𝐴,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤,𝑥   𝑦,𝐴,𝑧,𝑥   𝐵,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤   𝑦,𝐵,𝑧   𝑡,𝐸   𝐹,𝑝,𝑞,𝑟,𝑡,𝑦,𝑧   𝑅,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤   𝑦,𝑅,𝑧   𝑆,𝑝,𝑞,𝑟,𝑡,𝑦,𝑧   𝑇,𝑝,𝑞,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑟,𝑞,𝑝)   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑤,𝑣,𝑢)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑟,𝑞,𝑝)   𝐹(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem weiunfrlem
Dummy variables 𝑛 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weiunlem2.3 . . . . . . 7 (𝜑𝑅 We 𝐴)
2 weiunlem2.4 . . . . . . 7 (𝜑𝑅 Se 𝐴)
3 weiun.1 . . . . . . . . . 10 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
4 weiun.2 . . . . . . . . . 10 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
53, 4, 1, 2weiunlem2 36424 . . . . . . . . 9 (𝜑 → (𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵 ∧ ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡)))
65simp1d 1142 . . . . . . . 8 (𝜑𝐹: 𝑥𝐴 𝐵𝐴)
76fimassd 6691 . . . . . . 7 (𝜑 → (𝐹𝑟) ⊆ 𝐴)
8 weiunfrlem.6 . . . . . . . . . . 11 (𝜑𝑟 𝑥𝐴 𝐵)
96fdmd 6680 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑥𝐴 𝐵)
108, 9sseqtrrd 3981 . . . . . . . . . 10 (𝜑𝑟 ⊆ dom 𝐹)
11 sseqin2 4182 . . . . . . . . . 10 (𝑟 ⊆ dom 𝐹 ↔ (dom 𝐹𝑟) = 𝑟)
1210, 11sylib 218 . . . . . . . . 9 (𝜑 → (dom 𝐹𝑟) = 𝑟)
13 weiunfrlem.7 . . . . . . . . 9 (𝜑𝑟 ≠ ∅)
1412, 13eqnetrd 2992 . . . . . . . 8 (𝜑 → (dom 𝐹𝑟) ≠ ∅)
1514imadisjlnd 6041 . . . . . . 7 (𝜑 → (𝐹𝑟) ≠ ∅)
16 wereu2 5628 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ ((𝐹𝑟) ⊆ 𝐴 ∧ (𝐹𝑟) ≠ ∅)) → ∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
171, 2, 7, 15, 16syl22anc 838 . . . . . 6 (𝜑 → ∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
18 riotacl2 7342 . . . . . 6 (∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝 → (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝) ∈ {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝})
1917, 18syl 17 . . . . 5 (𝜑 → (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝) ∈ {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝})
20 weiunfrlem.5 . . . . 5 𝐸 = (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
21 simpr 484 . . . . . . . . 9 ((𝑛 = 𝑝𝑜 = 𝑞) → 𝑜 = 𝑞)
22 simpl 482 . . . . . . . . 9 ((𝑛 = 𝑝𝑜 = 𝑞) → 𝑛 = 𝑝)
2321, 22breq12d 5115 . . . . . . . 8 ((𝑛 = 𝑝𝑜 = 𝑞) → (𝑜𝑅𝑛𝑞𝑅𝑝))
2423notbid 318 . . . . . . 7 ((𝑛 = 𝑝𝑜 = 𝑞) → (¬ 𝑜𝑅𝑛 ↔ ¬ 𝑞𝑅𝑝))
2524cbvraldva 3215 . . . . . 6 (𝑛 = 𝑝 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛 ↔ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝))
2625cbvrabv 3413 . . . . 5 {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛} = {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝}
2719, 20, 263eltr4g 2845 . . . 4 (𝜑𝐸 ∈ {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛})
28 breq2 5106 . . . . . . 7 (𝑛 = 𝐸 → (𝑜𝑅𝑛𝑜𝑅𝐸))
2928notbid 318 . . . . . 6 (𝑛 = 𝐸 → (¬ 𝑜𝑅𝑛 ↔ ¬ 𝑜𝑅𝐸))
3029ralbidv 3156 . . . . 5 (𝑛 = 𝐸 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛 ↔ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3130elrab 3656 . . . 4 (𝐸 ∈ {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛} ↔ (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3227, 31sylib 218 . . 3 (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3332simpld 494 . 2 (𝜑𝐸 ∈ (𝐹𝑟))
3432simprd 495 . . 3 (𝜑 → ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸)
356ffnd 6671 . . . 4 (𝜑𝐹 Fn 𝑥𝐴 𝐵)
36 breq1 5105 . . . . . 6 (𝑜 = (𝐹𝑡) → (𝑜𝑅𝐸 ↔ (𝐹𝑡)𝑅𝐸))
3736notbid 318 . . . . 5 (𝑜 = (𝐹𝑡) → (¬ 𝑜𝑅𝐸 ↔ ¬ (𝐹𝑡)𝑅𝐸))
3837ralima 7193 . . . 4 ((𝐹 Fn 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵) → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸 ↔ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸))
3935, 8, 38syl2anc 584 . . 3 (𝜑 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸 ↔ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸))
4034, 39mpbid 232 . 2 (𝜑 → ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸)
41 simpr 484 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡 ∈ (𝑟𝐸 / 𝑥𝐵))
4241elin1d 4163 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡𝑟)
43 rspa 3224 . . . . 5 ((∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸𝑡𝑟) → ¬ (𝐹𝑡)𝑅𝐸)
4440, 42, 43syl2an2r 685 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ¬ (𝐹𝑡)𝑅𝐸)
45 csbeq1 3862 . . . . . . 7 (𝑠 = 𝐸𝑠 / 𝑥𝐵 = 𝐸 / 𝑥𝐵)
46 breq1 5105 . . . . . . . 8 (𝑠 = 𝐸 → (𝑠𝑅(𝐹𝑡) ↔ 𝐸𝑅(𝐹𝑡)))
4746notbid 318 . . . . . . 7 (𝑠 = 𝐸 → (¬ 𝑠𝑅(𝐹𝑡) ↔ ¬ 𝐸𝑅(𝐹𝑡)))
4845, 47raleqbidv 3316 . . . . . 6 (𝑠 = 𝐸 → (∀𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡) ↔ ∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡)))
495simp3d 1144 . . . . . 6 (𝜑 → ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡))
507, 33sseldd 3944 . . . . . 6 (𝜑𝐸𝐴)
5148, 49, 50rspcdva 3586 . . . . 5 (𝜑 → ∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡))
5241elin2d 4164 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡𝐸 / 𝑥𝐵)
53 rspa 3224 . . . . 5 ((∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡) ∧ 𝑡𝐸 / 𝑥𝐵) → ¬ 𝐸𝑅(𝐹𝑡))
5451, 52, 53syl2an2r 685 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ¬ 𝐸𝑅(𝐹𝑡))
55 weso 5622 . . . . . . 7 (𝑅 We 𝐴𝑅 Or 𝐴)
561, 55syl 17 . . . . . 6 (𝜑𝑅 Or 𝐴)
5756adantr 480 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑅 Or 𝐴)
586adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝐹: 𝑥𝐴 𝐵𝐴)
598adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑟 𝑥𝐴 𝐵)
6059, 42sseldd 3944 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡 𝑥𝐴 𝐵)
6158, 60ffvelcdmd 7039 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → (𝐹𝑡) ∈ 𝐴)
6250adantr 480 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝐸𝐴)
63 sotrieq2 5571 . . . . 5 ((𝑅 Or 𝐴 ∧ ((𝐹𝑡) ∈ 𝐴𝐸𝐴)) → ((𝐹𝑡) = 𝐸 ↔ (¬ (𝐹𝑡)𝑅𝐸 ∧ ¬ 𝐸𝑅(𝐹𝑡))))
6457, 61, 62, 63syl12anc 836 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ((𝐹𝑡) = 𝐸 ↔ (¬ (𝐹𝑡)𝑅𝐸 ∧ ¬ 𝐸𝑅(𝐹𝑡))))
6544, 54, 64mpbir2and 713 . . 3 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → (𝐹𝑡) = 𝐸)
6665ralrimiva 3125 . 2 (𝜑 → ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸)
6733, 40, 663jca 1128 1 (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸 ∧ ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  ∃!wreu 3349  {crab 3402  csb 3859  cin 3910  wss 3911  c0 4292   ciun 4951   class class class wbr 5102  {copab 5164  cmpt 5183   Or wor 5538   Se wse 5582   We wwe 5583  dom cdm 5631  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  crio 7325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-riota 7326
This theorem is referenced by:  weiunfr  36428
  Copyright terms: Public domain W3C validator