Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weiunfrlem Structured version   Visualization version   GIF version

Theorem weiunfrlem 36422
Description: Lemma for weiunfr 36425. (Contributed by Matthew House, 23-Aug-2025.)
Hypotheses
Ref Expression
weiun.1 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
weiun.2 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
weiunlem2.3 (𝜑𝑅 We 𝐴)
weiunlem2.4 (𝜑𝑅 Se 𝐴)
weiunfrlem.5 𝐸 = (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
weiunfrlem.6 (𝜑𝑟 𝑥𝐴 𝐵)
weiunfrlem.7 (𝜑𝑟 ≠ ∅)
Assertion
Ref Expression
weiunfrlem (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸 ∧ ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸))
Distinct variable groups:   𝜑,𝑡   𝐴,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤,𝑥   𝑦,𝐴,𝑧,𝑥   𝐵,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤   𝑦,𝐵,𝑧   𝑡,𝐸   𝐹,𝑝,𝑞,𝑟,𝑡,𝑦,𝑧   𝑅,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤   𝑦,𝑅,𝑧   𝑆,𝑝,𝑞,𝑟,𝑡,𝑦,𝑧   𝑇,𝑝,𝑞,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑟,𝑞,𝑝)   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑤,𝑣,𝑢)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑟,𝑞,𝑝)   𝐹(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem weiunfrlem
Dummy variables 𝑛 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weiunlem2.3 . . . . . . 7 (𝜑𝑅 We 𝐴)
2 weiunlem2.4 . . . . . . 7 (𝜑𝑅 Se 𝐴)
3 weiun.1 . . . . . . . . . 10 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
4 weiun.2 . . . . . . . . . 10 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
53, 4, 1, 2weiunlem2 36421 . . . . . . . . 9 (𝜑 → (𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵 ∧ ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡)))
65simp1d 1142 . . . . . . . 8 (𝜑𝐹: 𝑥𝐴 𝐵𝐴)
76fimassd 6763 . . . . . . 7 (𝜑 → (𝐹𝑟) ⊆ 𝐴)
8 weiunfrlem.6 . . . . . . . . . . 11 (𝜑𝑟 𝑥𝐴 𝐵)
96fdmd 6752 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑥𝐴 𝐵)
108, 9sseqtrrd 4050 . . . . . . . . . 10 (𝜑𝑟 ⊆ dom 𝐹)
11 sseqin2 4244 . . . . . . . . . 10 (𝑟 ⊆ dom 𝐹 ↔ (dom 𝐹𝑟) = 𝑟)
1210, 11sylib 218 . . . . . . . . 9 (𝜑 → (dom 𝐹𝑟) = 𝑟)
13 weiunfrlem.7 . . . . . . . . 9 (𝜑𝑟 ≠ ∅)
1412, 13eqnetrd 3014 . . . . . . . 8 (𝜑 → (dom 𝐹𝑟) ≠ ∅)
1514imadisjlnd 6105 . . . . . . 7 (𝜑 → (𝐹𝑟) ≠ ∅)
16 wereu2 5692 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ ((𝐹𝑟) ⊆ 𝐴 ∧ (𝐹𝑟) ≠ ∅)) → ∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
171, 2, 7, 15, 16syl22anc 838 . . . . . 6 (𝜑 → ∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
18 riotacl2 7416 . . . . . 6 (∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝 → (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝) ∈ {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝})
1917, 18syl 17 . . . . 5 (𝜑 → (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝) ∈ {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝})
20 weiunfrlem.5 . . . . 5 𝐸 = (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
21 simpr 484 . . . . . . . . 9 ((𝑛 = 𝑝𝑜 = 𝑞) → 𝑜 = 𝑞)
22 simpl 482 . . . . . . . . 9 ((𝑛 = 𝑝𝑜 = 𝑞) → 𝑛 = 𝑝)
2321, 22breq12d 5179 . . . . . . . 8 ((𝑛 = 𝑝𝑜 = 𝑞) → (𝑜𝑅𝑛𝑞𝑅𝑝))
2423notbid 318 . . . . . . 7 ((𝑛 = 𝑝𝑜 = 𝑞) → (¬ 𝑜𝑅𝑛 ↔ ¬ 𝑞𝑅𝑝))
2524cbvraldva 3245 . . . . . 6 (𝑛 = 𝑝 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛 ↔ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝))
2625cbvrabv 3454 . . . . 5 {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛} = {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝}
2719, 20, 263eltr4g 2861 . . . 4 (𝜑𝐸 ∈ {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛})
28 breq2 5170 . . . . . . 7 (𝑛 = 𝐸 → (𝑜𝑅𝑛𝑜𝑅𝐸))
2928notbid 318 . . . . . 6 (𝑛 = 𝐸 → (¬ 𝑜𝑅𝑛 ↔ ¬ 𝑜𝑅𝐸))
3029ralbidv 3184 . . . . 5 (𝑛 = 𝐸 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛 ↔ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3130elrab 3708 . . . 4 (𝐸 ∈ {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛} ↔ (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3227, 31sylib 218 . . 3 (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3332simpld 494 . 2 (𝜑𝐸 ∈ (𝐹𝑟))
3432simprd 495 . . 3 (𝜑 → ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸)
356ffnd 6743 . . . 4 (𝜑𝐹 Fn 𝑥𝐴 𝐵)
36 breq1 5169 . . . . . 6 (𝑜 = (𝐹𝑡) → (𝑜𝑅𝐸 ↔ (𝐹𝑡)𝑅𝐸))
3736notbid 318 . . . . 5 (𝑜 = (𝐹𝑡) → (¬ 𝑜𝑅𝐸 ↔ ¬ (𝐹𝑡)𝑅𝐸))
3837ralima 7269 . . . 4 ((𝐹 Fn 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵) → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸 ↔ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸))
3935, 8, 38syl2anc 583 . . 3 (𝜑 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸 ↔ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸))
4034, 39mpbid 232 . 2 (𝜑 → ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸)
41 simpr 484 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡 ∈ (𝑟𝐸 / 𝑥𝐵))
4241elin1d 4227 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡𝑟)
43 rspa 3254 . . . . 5 ((∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸𝑡𝑟) → ¬ (𝐹𝑡)𝑅𝐸)
4440, 42, 43syl2an2r 684 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ¬ (𝐹𝑡)𝑅𝐸)
45 csbeq1 3924 . . . . . . 7 (𝑠 = 𝐸𝑠 / 𝑥𝐵 = 𝐸 / 𝑥𝐵)
46 breq1 5169 . . . . . . . 8 (𝑠 = 𝐸 → (𝑠𝑅(𝐹𝑡) ↔ 𝐸𝑅(𝐹𝑡)))
4746notbid 318 . . . . . . 7 (𝑠 = 𝐸 → (¬ 𝑠𝑅(𝐹𝑡) ↔ ¬ 𝐸𝑅(𝐹𝑡)))
4845, 47raleqbidv 3354 . . . . . 6 (𝑠 = 𝐸 → (∀𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡) ↔ ∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡)))
495simp3d 1144 . . . . . 6 (𝜑 → ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡))
507, 33sseldd 4009 . . . . . 6 (𝜑𝐸𝐴)
5148, 49, 50rspcdva 3636 . . . . 5 (𝜑 → ∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡))
5241elin2d 4228 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡𝐸 / 𝑥𝐵)
53 rspa 3254 . . . . 5 ((∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡) ∧ 𝑡𝐸 / 𝑥𝐵) → ¬ 𝐸𝑅(𝐹𝑡))
5451, 52, 53syl2an2r 684 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ¬ 𝐸𝑅(𝐹𝑡))
55 weso 5686 . . . . . . 7 (𝑅 We 𝐴𝑅 Or 𝐴)
561, 55syl 17 . . . . . 6 (𝜑𝑅 Or 𝐴)
5756adantr 480 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑅 Or 𝐴)
586adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝐹: 𝑥𝐴 𝐵𝐴)
598adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑟 𝑥𝐴 𝐵)
6059, 42sseldd 4009 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡 𝑥𝐴 𝐵)
6158, 60ffvelcdmd 7114 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → (𝐹𝑡) ∈ 𝐴)
6250adantr 480 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝐸𝐴)
63 sotrieq2 5637 . . . . 5 ((𝑅 Or 𝐴 ∧ ((𝐹𝑡) ∈ 𝐴𝐸𝐴)) → ((𝐹𝑡) = 𝐸 ↔ (¬ (𝐹𝑡)𝑅𝐸 ∧ ¬ 𝐸𝑅(𝐹𝑡))))
6457, 61, 62, 63syl12anc 836 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ((𝐹𝑡) = 𝐸 ↔ (¬ (𝐹𝑡)𝑅𝐸 ∧ ¬ 𝐸𝑅(𝐹𝑡))))
6544, 54, 64mpbir2and 712 . . 3 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → (𝐹𝑡) = 𝐸)
6665ralrimiva 3152 . 2 (𝜑 → ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸)
6733, 40, 663jca 1128 1 (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸 ∧ ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  ∃!wreu 3386  {crab 3443  csb 3921  cin 3975  wss 3976  c0 4352   ciun 5015   class class class wbr 5166  {copab 5228  cmpt 5249   Or wor 5606   Se wse 5648   We wwe 5649  dom cdm 5695  cima 5698   Fn wfn 6563  wf 6564  cfv 6568  crio 7398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-fr 5650  df-se 5651  df-we 5652  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-fv 6576  df-riota 7399
This theorem is referenced by:  weiunfr  36425
  Copyright terms: Public domain W3C validator