Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weiunfrlem Structured version   Visualization version   GIF version

Theorem weiunfrlem 36447
Description: Lemma for weiunfr 36450. (Contributed by Matthew House, 23-Aug-2025.)
Hypotheses
Ref Expression
weiun.1 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
weiun.2 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
weiunlem2.3 (𝜑𝑅 We 𝐴)
weiunlem2.4 (𝜑𝑅 Se 𝐴)
weiunfrlem.5 𝐸 = (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
weiunfrlem.6 (𝜑𝑟 𝑥𝐴 𝐵)
weiunfrlem.7 (𝜑𝑟 ≠ ∅)
Assertion
Ref Expression
weiunfrlem (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸 ∧ ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸))
Distinct variable groups:   𝜑,𝑡   𝐴,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤,𝑥   𝑦,𝐴,𝑧,𝑥   𝐵,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤   𝑦,𝐵,𝑧   𝑡,𝐸   𝐹,𝑝,𝑞,𝑟,𝑡,𝑦,𝑧   𝑅,𝑝,𝑞,𝑟,𝑡,𝑢,𝑣,𝑤   𝑦,𝑅,𝑧   𝑆,𝑝,𝑞,𝑟,𝑡,𝑦,𝑧   𝑇,𝑝,𝑞,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑟,𝑞,𝑝)   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑤,𝑣,𝑢)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑟,𝑞,𝑝)   𝐹(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem weiunfrlem
Dummy variables 𝑛 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weiunlem2.3 . . . . . . 7 (𝜑𝑅 We 𝐴)
2 weiunlem2.4 . . . . . . 7 (𝜑𝑅 Se 𝐴)
3 weiun.1 . . . . . . . . . 10 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
4 weiun.2 . . . . . . . . . 10 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
53, 4, 1, 2weiunlem2 36446 . . . . . . . . 9 (𝜑 → (𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵 ∧ ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡)))
65simp1d 1142 . . . . . . . 8 (𝜑𝐹: 𝑥𝐴 𝐵𝐴)
76fimassd 6711 . . . . . . 7 (𝜑 → (𝐹𝑟) ⊆ 𝐴)
8 weiunfrlem.6 . . . . . . . . . . 11 (𝜑𝑟 𝑥𝐴 𝐵)
96fdmd 6700 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑥𝐴 𝐵)
108, 9sseqtrrd 3986 . . . . . . . . . 10 (𝜑𝑟 ⊆ dom 𝐹)
11 sseqin2 4188 . . . . . . . . . 10 (𝑟 ⊆ dom 𝐹 ↔ (dom 𝐹𝑟) = 𝑟)
1210, 11sylib 218 . . . . . . . . 9 (𝜑 → (dom 𝐹𝑟) = 𝑟)
13 weiunfrlem.7 . . . . . . . . 9 (𝜑𝑟 ≠ ∅)
1412, 13eqnetrd 2993 . . . . . . . 8 (𝜑 → (dom 𝐹𝑟) ≠ ∅)
1514imadisjlnd 6054 . . . . . . 7 (𝜑 → (𝐹𝑟) ≠ ∅)
16 wereu2 5637 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ ((𝐹𝑟) ⊆ 𝐴 ∧ (𝐹𝑟) ≠ ∅)) → ∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
171, 2, 7, 15, 16syl22anc 838 . . . . . 6 (𝜑 → ∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
18 riotacl2 7362 . . . . . 6 (∃!𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝 → (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝) ∈ {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝})
1917, 18syl 17 . . . . 5 (𝜑 → (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝) ∈ {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝})
20 weiunfrlem.5 . . . . 5 𝐸 = (𝑝 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝)
21 simpr 484 . . . . . . . . 9 ((𝑛 = 𝑝𝑜 = 𝑞) → 𝑜 = 𝑞)
22 simpl 482 . . . . . . . . 9 ((𝑛 = 𝑝𝑜 = 𝑞) → 𝑛 = 𝑝)
2321, 22breq12d 5122 . . . . . . . 8 ((𝑛 = 𝑝𝑜 = 𝑞) → (𝑜𝑅𝑛𝑞𝑅𝑝))
2423notbid 318 . . . . . . 7 ((𝑛 = 𝑝𝑜 = 𝑞) → (¬ 𝑜𝑅𝑛 ↔ ¬ 𝑞𝑅𝑝))
2524cbvraldva 3218 . . . . . 6 (𝑛 = 𝑝 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛 ↔ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝))
2625cbvrabv 3419 . . . . 5 {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛} = {𝑝 ∈ (𝐹𝑟) ∣ ∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑝}
2719, 20, 263eltr4g 2846 . . . 4 (𝜑𝐸 ∈ {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛})
28 breq2 5113 . . . . . . 7 (𝑛 = 𝐸 → (𝑜𝑅𝑛𝑜𝑅𝐸))
2928notbid 318 . . . . . 6 (𝑛 = 𝐸 → (¬ 𝑜𝑅𝑛 ↔ ¬ 𝑜𝑅𝐸))
3029ralbidv 3157 . . . . 5 (𝑛 = 𝐸 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛 ↔ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3130elrab 3661 . . . 4 (𝐸 ∈ {𝑛 ∈ (𝐹𝑟) ∣ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝑛} ↔ (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3227, 31sylib 218 . . 3 (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸))
3332simpld 494 . 2 (𝜑𝐸 ∈ (𝐹𝑟))
3432simprd 495 . . 3 (𝜑 → ∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸)
356ffnd 6691 . . . 4 (𝜑𝐹 Fn 𝑥𝐴 𝐵)
36 breq1 5112 . . . . . 6 (𝑜 = (𝐹𝑡) → (𝑜𝑅𝐸 ↔ (𝐹𝑡)𝑅𝐸))
3736notbid 318 . . . . 5 (𝑜 = (𝐹𝑡) → (¬ 𝑜𝑅𝐸 ↔ ¬ (𝐹𝑡)𝑅𝐸))
3837ralima 7213 . . . 4 ((𝐹 Fn 𝑥𝐴 𝐵𝑟 𝑥𝐴 𝐵) → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸 ↔ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸))
3935, 8, 38syl2anc 584 . . 3 (𝜑 → (∀𝑜 ∈ (𝐹𝑟) ¬ 𝑜𝑅𝐸 ↔ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸))
4034, 39mpbid 232 . 2 (𝜑 → ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸)
41 simpr 484 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡 ∈ (𝑟𝐸 / 𝑥𝐵))
4241elin1d 4169 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡𝑟)
43 rspa 3227 . . . . 5 ((∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸𝑡𝑟) → ¬ (𝐹𝑡)𝑅𝐸)
4440, 42, 43syl2an2r 685 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ¬ (𝐹𝑡)𝑅𝐸)
45 csbeq1 3867 . . . . . . 7 (𝑠 = 𝐸𝑠 / 𝑥𝐵 = 𝐸 / 𝑥𝐵)
46 breq1 5112 . . . . . . . 8 (𝑠 = 𝐸 → (𝑠𝑅(𝐹𝑡) ↔ 𝐸𝑅(𝐹𝑡)))
4746notbid 318 . . . . . . 7 (𝑠 = 𝐸 → (¬ 𝑠𝑅(𝐹𝑡) ↔ ¬ 𝐸𝑅(𝐹𝑡)))
4845, 47raleqbidv 3321 . . . . . 6 (𝑠 = 𝐸 → (∀𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡) ↔ ∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡)))
495simp3d 1144 . . . . . 6 (𝜑 → ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡))
507, 33sseldd 3949 . . . . . 6 (𝜑𝐸𝐴)
5148, 49, 50rspcdva 3592 . . . . 5 (𝜑 → ∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡))
5241elin2d 4170 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡𝐸 / 𝑥𝐵)
53 rspa 3227 . . . . 5 ((∀𝑡 𝐸 / 𝑥𝐵 ¬ 𝐸𝑅(𝐹𝑡) ∧ 𝑡𝐸 / 𝑥𝐵) → ¬ 𝐸𝑅(𝐹𝑡))
5451, 52, 53syl2an2r 685 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ¬ 𝐸𝑅(𝐹𝑡))
55 weso 5631 . . . . . . 7 (𝑅 We 𝐴𝑅 Or 𝐴)
561, 55syl 17 . . . . . 6 (𝜑𝑅 Or 𝐴)
5756adantr 480 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑅 Or 𝐴)
586adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝐹: 𝑥𝐴 𝐵𝐴)
598adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑟 𝑥𝐴 𝐵)
6059, 42sseldd 3949 . . . . . 6 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝑡 𝑥𝐴 𝐵)
6158, 60ffvelcdmd 7059 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → (𝐹𝑡) ∈ 𝐴)
6250adantr 480 . . . . 5 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → 𝐸𝐴)
63 sotrieq2 5580 . . . . 5 ((𝑅 Or 𝐴 ∧ ((𝐹𝑡) ∈ 𝐴𝐸𝐴)) → ((𝐹𝑡) = 𝐸 ↔ (¬ (𝐹𝑡)𝑅𝐸 ∧ ¬ 𝐸𝑅(𝐹𝑡))))
6457, 61, 62, 63syl12anc 836 . . . 4 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → ((𝐹𝑡) = 𝐸 ↔ (¬ (𝐹𝑡)𝑅𝐸 ∧ ¬ 𝐸𝑅(𝐹𝑡))))
6544, 54, 64mpbir2and 713 . . 3 ((𝜑𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)) → (𝐹𝑡) = 𝐸)
6665ralrimiva 3126 . 2 (𝜑 → ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸)
6733, 40, 663jca 1128 1 (𝜑 → (𝐸 ∈ (𝐹𝑟) ∧ ∀𝑡𝑟 ¬ (𝐹𝑡)𝑅𝐸 ∧ ∀𝑡 ∈ (𝑟𝐸 / 𝑥𝐵)(𝐹𝑡) = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  ∃!wreu 3354  {crab 3408  csb 3864  cin 3915  wss 3916  c0 4298   ciun 4957   class class class wbr 5109  {copab 5171  cmpt 5190   Or wor 5547   Se wse 5591   We wwe 5592  dom cdm 5640  cima 5643   Fn wfn 6508  wf 6509  cfv 6513  crio 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-riota 7346
This theorem is referenced by:  weiunfr  36450
  Copyright terms: Public domain W3C validator