| Step | Hyp | Ref
| Expression |
| 1 | | weiunlem2.3 |
. . . . . . 7
⊢ (𝜑 → 𝑅 We 𝐴) |
| 2 | | weiunlem2.4 |
. . . . . . 7
⊢ (𝜑 → 𝑅 Se 𝐴) |
| 3 | | weiun.1 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) |
| 4 | | weiun.2 |
. . . . . . . . . 10
⊢ 𝑇 = {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)))} |
| 5 | 3, 4, 1, 2 | weiunlem2 36439 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵 ∧ ∀𝑠 ∈ 𝐴 ∀𝑡 ∈ ⦋ 𝑠 / 𝑥⦌𝐵 ¬ 𝑠𝑅(𝐹‘𝑡))) |
| 6 | 5 | simp1d 1142 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴) |
| 7 | 6 | fimassd 6737 |
. . . . . . 7
⊢ (𝜑 → (𝐹 “ 𝑟) ⊆ 𝐴) |
| 8 | | weiunfrlem.6 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵) |
| 9 | 6 | fdmd 6726 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = ∪ 𝑥 ∈ 𝐴 𝐵) |
| 10 | 8, 9 | sseqtrrd 4001 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑟 ⊆ dom 𝐹) |
| 11 | | sseqin2 4203 |
. . . . . . . . . 10
⊢ (𝑟 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝑟) = 𝑟) |
| 12 | 10, 11 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → (dom 𝐹 ∩ 𝑟) = 𝑟) |
| 13 | | weiunfrlem.7 |
. . . . . . . . 9
⊢ (𝜑 → 𝑟 ≠ ∅) |
| 14 | 12, 13 | eqnetrd 2998 |
. . . . . . . 8
⊢ (𝜑 → (dom 𝐹 ∩ 𝑟) ≠ ∅) |
| 15 | 14 | imadisjlnd 6079 |
. . . . . . 7
⊢ (𝜑 → (𝐹 “ 𝑟) ≠ ∅) |
| 16 | | wereu2 5662 |
. . . . . . 7
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ ((𝐹 “ 𝑟) ⊆ 𝐴 ∧ (𝐹 “ 𝑟) ≠ ∅)) → ∃!𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) |
| 17 | 1, 2, 7, 15, 16 | syl22anc 838 |
. . . . . 6
⊢ (𝜑 → ∃!𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) |
| 18 | | riotacl2 7386 |
. . . . . 6
⊢
(∃!𝑝 ∈
(𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝 → (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) ∈ {𝑝 ∈ (𝐹 “ 𝑟) ∣ ∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝}) |
| 19 | 17, 18 | syl 17 |
. . . . 5
⊢ (𝜑 → (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) ∈ {𝑝 ∈ (𝐹 “ 𝑟) ∣ ∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝}) |
| 20 | | weiunfrlem.5 |
. . . . 5
⊢ 𝐸 = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) |
| 21 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑝 ∧ 𝑜 = 𝑞) → 𝑜 = 𝑞) |
| 22 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑝 ∧ 𝑜 = 𝑞) → 𝑛 = 𝑝) |
| 23 | 21, 22 | breq12d 5136 |
. . . . . . . 8
⊢ ((𝑛 = 𝑝 ∧ 𝑜 = 𝑞) → (𝑜𝑅𝑛 ↔ 𝑞𝑅𝑝)) |
| 24 | 23 | notbid 318 |
. . . . . . 7
⊢ ((𝑛 = 𝑝 ∧ 𝑜 = 𝑞) → (¬ 𝑜𝑅𝑛 ↔ ¬ 𝑞𝑅𝑝)) |
| 25 | 24 | cbvraldva 3225 |
. . . . . 6
⊢ (𝑛 = 𝑝 → (∀𝑜 ∈ (𝐹 “ 𝑟) ¬ 𝑜𝑅𝑛 ↔ ∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝)) |
| 26 | 25 | cbvrabv 3430 |
. . . . 5
⊢ {𝑛 ∈ (𝐹 “ 𝑟) ∣ ∀𝑜 ∈ (𝐹 “ 𝑟) ¬ 𝑜𝑅𝑛} = {𝑝 ∈ (𝐹 “ 𝑟) ∣ ∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝} |
| 27 | 19, 20, 26 | 3eltr4g 2850 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ {𝑛 ∈ (𝐹 “ 𝑟) ∣ ∀𝑜 ∈ (𝐹 “ 𝑟) ¬ 𝑜𝑅𝑛}) |
| 28 | | breq2 5127 |
. . . . . . 7
⊢ (𝑛 = 𝐸 → (𝑜𝑅𝑛 ↔ 𝑜𝑅𝐸)) |
| 29 | 28 | notbid 318 |
. . . . . 6
⊢ (𝑛 = 𝐸 → (¬ 𝑜𝑅𝑛 ↔ ¬ 𝑜𝑅𝐸)) |
| 30 | 29 | ralbidv 3165 |
. . . . 5
⊢ (𝑛 = 𝐸 → (∀𝑜 ∈ (𝐹 “ 𝑟) ¬ 𝑜𝑅𝑛 ↔ ∀𝑜 ∈ (𝐹 “ 𝑟) ¬ 𝑜𝑅𝐸)) |
| 31 | 30 | elrab 3675 |
. . . 4
⊢ (𝐸 ∈ {𝑛 ∈ (𝐹 “ 𝑟) ∣ ∀𝑜 ∈ (𝐹 “ 𝑟) ¬ 𝑜𝑅𝑛} ↔ (𝐸 ∈ (𝐹 “ 𝑟) ∧ ∀𝑜 ∈ (𝐹 “ 𝑟) ¬ 𝑜𝑅𝐸)) |
| 32 | 27, 31 | sylib 218 |
. . 3
⊢ (𝜑 → (𝐸 ∈ (𝐹 “ 𝑟) ∧ ∀𝑜 ∈ (𝐹 “ 𝑟) ¬ 𝑜𝑅𝐸)) |
| 33 | 32 | simpld 494 |
. 2
⊢ (𝜑 → 𝐸 ∈ (𝐹 “ 𝑟)) |
| 34 | 32 | simprd 495 |
. . 3
⊢ (𝜑 → ∀𝑜 ∈ (𝐹 “ 𝑟) ¬ 𝑜𝑅𝐸) |
| 35 | 6 | ffnd 6717 |
. . . 4
⊢ (𝜑 → 𝐹 Fn ∪
𝑥 ∈ 𝐴 𝐵) |
| 36 | | breq1 5126 |
. . . . . 6
⊢ (𝑜 = (𝐹‘𝑡) → (𝑜𝑅𝐸 ↔ (𝐹‘𝑡)𝑅𝐸)) |
| 37 | 36 | notbid 318 |
. . . . 5
⊢ (𝑜 = (𝐹‘𝑡) → (¬ 𝑜𝑅𝐸 ↔ ¬ (𝐹‘𝑡)𝑅𝐸)) |
| 38 | 37 | ralima 7239 |
. . . 4
⊢ ((𝐹 Fn ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵) → (∀𝑜 ∈ (𝐹 “ 𝑟) ¬ 𝑜𝑅𝐸 ↔ ∀𝑡 ∈ 𝑟 ¬ (𝐹‘𝑡)𝑅𝐸)) |
| 39 | 35, 8, 38 | syl2anc 584 |
. . 3
⊢ (𝜑 → (∀𝑜 ∈ (𝐹 “ 𝑟) ¬ 𝑜𝑅𝐸 ↔ ∀𝑡 ∈ 𝑟 ¬ (𝐹‘𝑡)𝑅𝐸)) |
| 40 | 34, 39 | mpbid 232 |
. 2
⊢ (𝜑 → ∀𝑡 ∈ 𝑟 ¬ (𝐹‘𝑡)𝑅𝐸) |
| 41 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) → 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) |
| 42 | 41 | elin1d 4184 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) → 𝑡 ∈ 𝑟) |
| 43 | | rspa 3234 |
. . . . 5
⊢
((∀𝑡 ∈
𝑟 ¬ (𝐹‘𝑡)𝑅𝐸 ∧ 𝑡 ∈ 𝑟) → ¬ (𝐹‘𝑡)𝑅𝐸) |
| 44 | 40, 42, 43 | syl2an2r 685 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) → ¬ (𝐹‘𝑡)𝑅𝐸) |
| 45 | | csbeq1 3882 |
. . . . . . 7
⊢ (𝑠 = 𝐸 → ⦋𝑠 / 𝑥⦌𝐵 = ⦋𝐸 / 𝑥⦌𝐵) |
| 46 | | breq1 5126 |
. . . . . . . 8
⊢ (𝑠 = 𝐸 → (𝑠𝑅(𝐹‘𝑡) ↔ 𝐸𝑅(𝐹‘𝑡))) |
| 47 | 46 | notbid 318 |
. . . . . . 7
⊢ (𝑠 = 𝐸 → (¬ 𝑠𝑅(𝐹‘𝑡) ↔ ¬ 𝐸𝑅(𝐹‘𝑡))) |
| 48 | 45, 47 | raleqbidv 3329 |
. . . . . 6
⊢ (𝑠 = 𝐸 → (∀𝑡 ∈ ⦋ 𝑠 / 𝑥⦌𝐵 ¬ 𝑠𝑅(𝐹‘𝑡) ↔ ∀𝑡 ∈ ⦋ 𝐸 / 𝑥⦌𝐵 ¬ 𝐸𝑅(𝐹‘𝑡))) |
| 49 | 5 | simp3d 1144 |
. . . . . 6
⊢ (𝜑 → ∀𝑠 ∈ 𝐴 ∀𝑡 ∈ ⦋ 𝑠 / 𝑥⦌𝐵 ¬ 𝑠𝑅(𝐹‘𝑡)) |
| 50 | 7, 33 | sseldd 3964 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝐴) |
| 51 | 48, 49, 50 | rspcdva 3606 |
. . . . 5
⊢ (𝜑 → ∀𝑡 ∈ ⦋ 𝐸 / 𝑥⦌𝐵 ¬ 𝐸𝑅(𝐹‘𝑡)) |
| 52 | 41 | elin2d 4185 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) → 𝑡 ∈ ⦋𝐸 / 𝑥⦌𝐵) |
| 53 | | rspa 3234 |
. . . . 5
⊢
((∀𝑡 ∈
⦋ 𝐸 / 𝑥⦌𝐵 ¬ 𝐸𝑅(𝐹‘𝑡) ∧ 𝑡 ∈ ⦋𝐸 / 𝑥⦌𝐵) → ¬ 𝐸𝑅(𝐹‘𝑡)) |
| 54 | 51, 52, 53 | syl2an2r 685 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) → ¬ 𝐸𝑅(𝐹‘𝑡)) |
| 55 | | weso 5656 |
. . . . . . 7
⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| 56 | 1, 55 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 Or 𝐴) |
| 57 | 56 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) → 𝑅 Or 𝐴) |
| 58 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) → 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴) |
| 59 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) → 𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵) |
| 60 | 59, 42 | sseldd 3964 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) → 𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
| 61 | 58, 60 | ffvelcdmd 7085 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) → (𝐹‘𝑡) ∈ 𝐴) |
| 62 | 50 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) → 𝐸 ∈ 𝐴) |
| 63 | | sotrieq2 5604 |
. . . . 5
⊢ ((𝑅 Or 𝐴 ∧ ((𝐹‘𝑡) ∈ 𝐴 ∧ 𝐸 ∈ 𝐴)) → ((𝐹‘𝑡) = 𝐸 ↔ (¬ (𝐹‘𝑡)𝑅𝐸 ∧ ¬ 𝐸𝑅(𝐹‘𝑡)))) |
| 64 | 57, 61, 62, 63 | syl12anc 836 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) → ((𝐹‘𝑡) = 𝐸 ↔ (¬ (𝐹‘𝑡)𝑅𝐸 ∧ ¬ 𝐸𝑅(𝐹‘𝑡)))) |
| 65 | 44, 54, 64 | mpbir2and 713 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)) → (𝐹‘𝑡) = 𝐸) |
| 66 | 65 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)(𝐹‘𝑡) = 𝐸) |
| 67 | 33, 40, 66 | 3jca 1128 |
1
⊢ (𝜑 → (𝐸 ∈ (𝐹 “ 𝑟) ∧ ∀𝑡 ∈ 𝑟 ¬ (𝐹‘𝑡)𝑅𝐸 ∧ ∀𝑡 ∈ (𝑟 ∩ ⦋𝐸 / 𝑥⦌𝐵)(𝐹‘𝑡) = 𝐸)) |