| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wfaxreg | Structured version Visualization version GIF version | ||
| Description: The class of well-founded sets models the Axiom of Regularity ax-reg 9599. Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| wfax.1 | ⊢ 𝑊 = ∪ (𝑅1 “ On) |
| Ref | Expression |
|---|---|
| wfaxreg | ⊢ ∀𝑥 ∈ 𝑊 (∃𝑦 ∈ 𝑊 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfax.1 | . . 3 ⊢ 𝑊 = ∪ (𝑅1 “ On) | |
| 2 | 1 | eqimssi 4017 | . 2 ⊢ 𝑊 ⊆ ∪ (𝑅1 “ On) |
| 3 | sswfaxreg 44946 | . 2 ⊢ (𝑊 ⊆ ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑊 (∃𝑦 ∈ 𝑊 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)))) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ 𝑊 (∃𝑦 ∈ 𝑊 𝑦 ∈ 𝑥 → ∃𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∀wral 3050 ∃wrex 3059 ⊆ wss 3924 ∪ cuni 4881 “ cima 5655 Oncon0 6350 𝑅1cr1 9769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-r1 9771 df-rank 9772 df-relp 44902 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |