MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem14 Structured version   Visualization version   GIF version

Theorem wfrlem14 7674
Description: Lemma for well-founded recursion. Compute the value of 𝐶. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem13.1 𝑅 We 𝐴
wfrlem13.2 𝑅 Se 𝐴
wfrlem13.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
wfrlem13.4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
Assertion
Ref Expression
wfrlem14 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐹,𝑧   𝑦,𝐺   𝑦,𝑅,𝑧   𝑦,𝐶
Allowed substitution hints:   𝐶(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem14
StepHypRef Expression
1 wfrlem13.1 . . 3 𝑅 We 𝐴
2 wfrlem13.2 . . 3 𝑅 Se 𝐴
3 wfrlem13.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
4 wfrlem13.4 . . 3 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
51, 2, 3, 4wfrlem13 7673 . 2 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
6 elun 3963 . . . 4 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}))
7 velsn 4397 . . . . 5 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
87orbi2i 927 . . . 4 ((𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
96, 8bitri 266 . . 3 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
101, 2, 3wfrlem12 7672 . . . . . . 7 (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
11 fnfun 6209 . . . . . . . 8 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → Fun 𝐶)
12 ssun1 3986 . . . . . . . . . 10 𝐹 ⊆ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
1312, 4sseqtr4i 3846 . . . . . . . . 9 𝐹𝐶
14 funssfv 6439 . . . . . . . . . 10 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐶𝑦) = (𝐹𝑦))
153wfrdmcl 7669 . . . . . . . . . . . 12 (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹)
16 fun2ssres 6155 . . . . . . . . . . . 12 ((Fun 𝐶𝐹𝐶 ∧ Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))
1715, 16syl3an3 1198 . . . . . . . . . . 11 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))
1817fveq2d 6422 . . . . . . . . . 10 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
1914, 18eqeq12d 2832 . . . . . . . . 9 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2013, 19mp3an2 1566 . . . . . . . 8 ((Fun 𝐶𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2111, 20sylan 571 . . . . . . 7 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2210, 21syl5ibr 237 . . . . . 6 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑦 ∈ dom 𝐹) → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2322ex 399 . . . . 5 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ dom 𝐹 → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
2423pm2.43d 53 . . . 4 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
25 vsnid 4414 . . . . . . 7 𝑧 ∈ {𝑧}
26 elun2 3991 . . . . . . 7 (𝑧 ∈ {𝑧} → 𝑧 ∈ (dom 𝐹 ∪ {𝑧}))
2725, 26ax-mp 5 . . . . . 6 𝑧 ∈ (dom 𝐹 ∪ {𝑧})
284reseq1i 5607 . . . . . . . . . . . . 13 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = ((𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧))
29 resundir 5629 . . . . . . . . . . . . 13 ((𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧)) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)))
30 wefr 5314 . . . . . . . . . . . . . . . . 17 (𝑅 We 𝐴𝑅 Fr 𝐴)
311, 30ax-mp 5 . . . . . . . . . . . . . . . 16 𝑅 Fr 𝐴
32 predfrirr 5936 . . . . . . . . . . . . . . . 16 (𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
33 ressnop0 6654 . . . . . . . . . . . . . . . 16 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧) → ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅)
3431, 32, 33mp2b 10 . . . . . . . . . . . . . . 15 ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅
3534uneq2i 3974 . . . . . . . . . . . . . 14 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅)
36 un0 4176 . . . . . . . . . . . . . 14 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3735, 36eqtri 2839 . . . . . . . . . . . . 13 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3828, 29, 373eqtri 2843 . . . . . . . . . . . 12 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3938fveq2i 6421 . . . . . . . . . . 11 (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
4039opeq2i 4610 . . . . . . . . . 10 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ = ⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩
41 opex 5135 . . . . . . . . . . 11 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ V
4241elsn 4396 . . . . . . . . . 10 (⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↔ ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ = ⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩)
4340, 42mpbir 222 . . . . . . . . 9 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}
44 elun2 3991 . . . . . . . . 9 (⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} → ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}))
4543, 44ax-mp 5 . . . . . . . 8 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
4645, 4eleqtrri 2895 . . . . . . 7 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ 𝐶
47 fnopfvb 6467 . . . . . . 7 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑧 ∈ (dom 𝐹 ∪ {𝑧})) → ((𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) ↔ ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ 𝐶))
4846, 47mpbiri 249 . . . . . 6 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑧 ∈ (dom 𝐹 ∪ {𝑧})) → (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
4927, 48mpan2 674 . . . . 5 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
50 fveq2 6418 . . . . . 6 (𝑦 = 𝑧 → (𝐶𝑦) = (𝐶𝑧))
51 predeq3 5911 . . . . . . . 8 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
5251reseq2d 5611 . . . . . . 7 (𝑦 = 𝑧 → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))
5352fveq2d 6422 . . . . . 6 (𝑦 = 𝑧 → (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
5450, 53eqeq12d 2832 . . . . 5 (𝑦 = 𝑧 → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))))
5549, 54syl5ibrcom 238 . . . 4 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 = 𝑧 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5624, 55jaod 877 . . 3 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → ((𝑦 ∈ dom 𝐹𝑦 = 𝑧) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
579, 56syl5bi 233 . 2 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
585, 57syl 17 1 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  wcel 2157  cdif 3777  cun 3778  wss 3780  c0 4127  {csn 4381  cop 4387   Fr wfr 5280   Se wse 5281   We wwe 5282  dom cdm 5324  cres 5326  Predcpred 5906  Fun wfun 6105   Fn wfn 6106  cfv 6111  wrecscwrecs 7651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-id 5232  df-po 5245  df-so 5246  df-fr 5283  df-se 5284  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-iota 6074  df-fun 6113  df-fn 6114  df-fv 6119  df-wrecs 7652
This theorem is referenced by:  wfrlem15  7675
  Copyright terms: Public domain W3C validator