MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem14 Structured version   Visualization version   GIF version

Theorem wfrlem14 8046
Description: Lemma for well-ordered recursion. Compute the value of 𝐶. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem13.1 𝑅 We 𝐴
wfrlem13.2 𝑅 Se 𝐴
wfrlem13.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
wfrlem13.4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
Assertion
Ref Expression
wfrlem14 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐹,𝑧   𝑦,𝐺   𝑦,𝑅,𝑧   𝑦,𝐶
Allowed substitution hints:   𝐶(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem14
StepHypRef Expression
1 wfrlem13.1 . . 3 𝑅 We 𝐴
2 wfrlem13.2 . . 3 𝑅 Se 𝐴
3 wfrlem13.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
4 wfrlem13.4 . . 3 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
51, 2, 3, 4wfrlem13 8045 . 2 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
6 elun 4049 . . . 4 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}))
7 velsn 4543 . . . . 5 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
87orbi2i 913 . . . 4 ((𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
96, 8bitri 278 . . 3 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
101, 2, 3wfrlem12 8044 . . . . . . 7 (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
11 fnfun 6457 . . . . . . . 8 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → Fun 𝐶)
12 ssun1 4072 . . . . . . . . . 10 𝐹 ⊆ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
1312, 4sseqtrri 3924 . . . . . . . . 9 𝐹𝐶
14 funssfv 6716 . . . . . . . . . 10 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐶𝑦) = (𝐹𝑦))
153wfrdmcl 8041 . . . . . . . . . . . 12 (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹)
16 fun2ssres 6403 . . . . . . . . . . . 12 ((Fun 𝐶𝐹𝐶 ∧ Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))
1715, 16syl3an3 1167 . . . . . . . . . . 11 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))
1817fveq2d 6699 . . . . . . . . . 10 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
1914, 18eqeq12d 2752 . . . . . . . . 9 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2013, 19mp3an2 1451 . . . . . . . 8 ((Fun 𝐶𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2111, 20sylan 583 . . . . . . 7 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2210, 21syl5ibr 249 . . . . . 6 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑦 ∈ dom 𝐹) → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2322ex 416 . . . . 5 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ dom 𝐹 → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
2423pm2.43d 53 . . . 4 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
25 vsnid 4564 . . . . . . 7 𝑧 ∈ {𝑧}
26 elun2 4077 . . . . . . 7 (𝑧 ∈ {𝑧} → 𝑧 ∈ (dom 𝐹 ∪ {𝑧}))
2725, 26ax-mp 5 . . . . . 6 𝑧 ∈ (dom 𝐹 ∪ {𝑧})
284reseq1i 5832 . . . . . . . . . . . . 13 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = ((𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧))
29 resundir 5851 . . . . . . . . . . . . 13 ((𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧)) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)))
30 wefr 5526 . . . . . . . . . . . . . . . . 17 (𝑅 We 𝐴𝑅 Fr 𝐴)
311, 30ax-mp 5 . . . . . . . . . . . . . . . 16 𝑅 Fr 𝐴
32 predfrirr 6170 . . . . . . . . . . . . . . . 16 (𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
33 ressnop0 6946 . . . . . . . . . . . . . . . 16 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧) → ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅)
3431, 32, 33mp2b 10 . . . . . . . . . . . . . . 15 ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅
3534uneq2i 4060 . . . . . . . . . . . . . 14 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅)
36 un0 4291 . . . . . . . . . . . . . 14 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3735, 36eqtri 2759 . . . . . . . . . . . . 13 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3828, 29, 373eqtri 2763 . . . . . . . . . . . 12 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3938fveq2i 6698 . . . . . . . . . . 11 (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
4039opeq2i 4774 . . . . . . . . . 10 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ = ⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩
41 opex 5333 . . . . . . . . . . 11 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ V
4241elsn 4542 . . . . . . . . . 10 (⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↔ ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ = ⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩)
4340, 42mpbir 234 . . . . . . . . 9 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}
44 elun2 4077 . . . . . . . . 9 (⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} → ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}))
4543, 44ax-mp 5 . . . . . . . 8 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
4645, 4eleqtrri 2830 . . . . . . 7 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ 𝐶
47 fnopfvb 6744 . . . . . . 7 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑧 ∈ (dom 𝐹 ∪ {𝑧})) → ((𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) ↔ ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ 𝐶))
4846, 47mpbiri 261 . . . . . 6 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑧 ∈ (dom 𝐹 ∪ {𝑧})) → (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
4927, 48mpan2 691 . . . . 5 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
50 fveq2 6695 . . . . . 6 (𝑦 = 𝑧 → (𝐶𝑦) = (𝐶𝑧))
51 predeq3 6144 . . . . . . . 8 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
5251reseq2d 5836 . . . . . . 7 (𝑦 = 𝑧 → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))
5352fveq2d 6699 . . . . . 6 (𝑦 = 𝑧 → (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
5450, 53eqeq12d 2752 . . . . 5 (𝑦 = 𝑧 → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))))
5549, 54syl5ibrcom 250 . . . 4 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 = 𝑧 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5624, 55jaod 859 . . 3 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → ((𝑦 ∈ dom 𝐹𝑦 = 𝑧) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
579, 56syl5bi 245 . 2 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
585, 57syl 17 1 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2112  cdif 3850  cun 3851  wss 3853  c0 4223  {csn 4527  cop 4533   Fr wfr 5491   Se wse 5492   We wwe 5493  dom cdm 5536  cres 5538  Predcpred 6139  Fun wfun 6352   Fn wfn 6353  cfv 6358  wrecscwrecs 8024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-iota 6316  df-fun 6360  df-fn 6361  df-fv 6366  df-wrecs 8025
This theorem is referenced by:  wfrlem15  8047
  Copyright terms: Public domain W3C validator