MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem15 Structured version   Visualization version   GIF version

Theorem wfrlem15 8047
Description: Lemma for well-ordered recursion. When 𝑧 is 𝑅 minimal, 𝐶 is an acceptable function. This step is where the Axiom of Replacement becomes required. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem13.1 𝑅 We 𝐴
wfrlem13.2 𝑅 Se 𝐴
wfrlem13.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
wfrlem13.4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
Assertion
Ref Expression
wfrlem15 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐹,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦,𝑧   𝐶,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem15
StepHypRef Expression
1 wfrlem13.1 . . . . 5 𝑅 We 𝐴
2 wfrlem13.2 . . . . 5 𝑅 Se 𝐴
3 wfrlem13.3 . . . . 5 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
4 wfrlem13.4 . . . . 5 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
51, 2, 3, 4wfrlem13 8045 . . . 4 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
65adantr 484 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
71, 3wfrlem10 8042 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹)
8 eldifi 4027 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
9 setlikespec 6161 . . . . . 6 ((𝑧𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
108, 2, 9sylancl 589 . . . . 5 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
1110adantr 484 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
127, 11eqeltrrd 2832 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → dom 𝐹 ∈ V)
13 snex 5309 . . . . 5 {𝑧} ∈ V
14 unexg 7512 . . . . 5 ((dom 𝐹 ∈ V ∧ {𝑧} ∈ V) → (dom 𝐹 ∪ {𝑧}) ∈ V)
1513, 14mpan2 691 . . . 4 (dom 𝐹 ∈ V → (dom 𝐹 ∪ {𝑧}) ∈ V)
16 fnex 7011 . . . 4 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ (dom 𝐹 ∪ {𝑧}) ∈ V) → 𝐶 ∈ V)
1715, 16sylan2 596 . . 3 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ dom 𝐹 ∈ V) → 𝐶 ∈ V)
186, 12, 17syl2anc 587 . 2 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ V)
1912, 13, 14sylancl 589 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (dom 𝐹 ∪ {𝑧}) ∈ V)
203wfrdmss 8039 . . . . . . 7 dom 𝐹𝐴
218snssd 4708 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → {𝑧} ⊆ 𝐴)
22 unss 4084 . . . . . . . 8 ((dom 𝐹𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
2322biimpi 219 . . . . . . 7 ((dom 𝐹𝐴 ∧ {𝑧} ⊆ 𝐴) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
2420, 21, 23sylancr 590 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
2524adantr 484 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
26 elun 4049 . . . . . . . 8 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}))
27 velsn 4543 . . . . . . . . 9 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
2827orbi2i 913 . . . . . . . 8 ((𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
2926, 28bitri 278 . . . . . . 7 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
303wfrdmcl 8041 . . . . . . . . . 10 (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹)
31 ssun3 4074 . . . . . . . . . 10 (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))
3230, 31syl 17 . . . . . . . . 9 (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))
3332a1i 11 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
34 ssun1 4072 . . . . . . . . . 10 dom 𝐹 ⊆ (dom 𝐹 ∪ {𝑧})
357, 34eqsstrdi 3941 . . . . . . . . 9 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ⊆ (dom 𝐹 ∪ {𝑧}))
36 predeq3 6144 . . . . . . . . . 10 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
3736sseq1d 3918 . . . . . . . . 9 (𝑦 = 𝑧 → (Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}) ↔ Pred(𝑅, 𝐴, 𝑧) ⊆ (dom 𝐹 ∪ {𝑧})))
3835, 37syl5ibrcom 250 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
3933, 38jaod 859 . . . . . . 7 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ((𝑦 ∈ dom 𝐹𝑦 = 𝑧) → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
4029, 39syl5bi 245 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
4140ralrimiv 3094 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))
4225, 41jca 515 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
431, 2, 3, 4wfrlem14 8046 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
4443ralrimiv 3094 . . . . 5 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))
4544adantr 484 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))
466, 42, 453jca 1130 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
47 fneq2 6449 . . . 4 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (𝐶 Fn 𝑥𝐶 Fn (dom 𝐹 ∪ {𝑧})))
48 sseq1 3912 . . . . 5 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (𝑥𝐴 ↔ (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴))
49 sseq2 3913 . . . . . 6 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
5049raleqbi1dv 3307 . . . . 5 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
5148, 50anbi12d 634 . . . 4 (𝑥 = (dom 𝐹 ∪ {𝑧}) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))))
52 raleq 3309 . . . 4 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5347, 51, 523anbi123d 1438 . . 3 (𝑥 = (dom 𝐹 ∪ {𝑧}) → ((𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
5419, 46, 53spcedv 3503 . 2 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
55 fneq1 6448 . . . 4 (𝑓 = 𝐶 → (𝑓 Fn 𝑥𝐶 Fn 𝑥))
56 fveq1 6694 . . . . . 6 (𝑓 = 𝐶 → (𝑓𝑦) = (𝐶𝑦))
57 reseq1 5830 . . . . . . 7 (𝑓 = 𝐶 → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))
5857fveq2d 6699 . . . . . 6 (𝑓 = 𝐶 → (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))
5956, 58eqeq12d 2752 . . . . 5 (𝑓 = 𝐶 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
6059ralbidv 3108 . . . 4 (𝑓 = 𝐶 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
6155, 603anbi13d 1440 . . 3 (𝑓 = 𝐶 → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
6261exbidv 1929 . 2 (𝑓 = 𝐶 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
6318, 54, 62elabd 3579 1 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847  w3a 1089   = wceq 1543  wex 1787  wcel 2112  {cab 2714  wral 3051  Vcvv 3398  cdif 3850  cun 3851  wss 3853  c0 4223  {csn 4527  cop 4533   Se wse 5492   We wwe 5493  dom cdm 5536  cres 5538  Predcpred 6139   Fn wfn 6353  cfv 6358  wrecscwrecs 8024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-wrecs 8025
This theorem is referenced by:  wfrlem16  8048
  Copyright terms: Public domain W3C validator