MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem15 Structured version   Visualization version   GIF version

Theorem wfrlem15 7672
Description: Lemma for well-founded recursion. When 𝑧 is 𝑅 minimal, 𝐶 is an acceptable function. This step is where the Axiom of Replacement becomes required. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem13.1 𝑅 We 𝐴
wfrlem13.2 𝑅 Se 𝐴
wfrlem13.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
wfrlem13.4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
Assertion
Ref Expression
wfrlem15 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐹,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦,𝑧   𝐶,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem15
StepHypRef Expression
1 wfrlem13.1 . . . . . 6 𝑅 We 𝐴
2 wfrlem13.3 . . . . . 6 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
31, 2wfrlem10 7667 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹)
4 eldifi 3942 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
5 wfrlem13.2 . . . . . . 7 𝑅 Se 𝐴
6 setlikespec 5925 . . . . . . 7 ((𝑧𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
74, 5, 6sylancl 576 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
87adantr 468 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
93, 8eqeltrrd 2897 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → dom 𝐹 ∈ V)
10 snex 5109 . . . 4 {𝑧} ∈ V
11 unexg 7196 . . . 4 ((dom 𝐹 ∈ V ∧ {𝑧} ∈ V) → (dom 𝐹 ∪ {𝑧}) ∈ V)
129, 10, 11sylancl 576 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (dom 𝐹 ∪ {𝑧}) ∈ V)
13 wfrlem13.4 . . . . . 6 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
141, 5, 2, 13wfrlem13 7670 . . . . 5 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
1514adantr 468 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
162wfrdmss 7664 . . . . . . 7 dom 𝐹𝐴
174snssd 4541 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → {𝑧} ⊆ 𝐴)
18 unss 3997 . . . . . . . 8 ((dom 𝐹𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
1918biimpi 207 . . . . . . 7 ((dom 𝐹𝐴 ∧ {𝑧} ⊆ 𝐴) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
2016, 17, 19sylancr 577 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
2120adantr 468 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
22 elun 3963 . . . . . . . 8 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}))
23 velsn 4397 . . . . . . . . 9 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
2423orbi2i 927 . . . . . . . 8 ((𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
2522, 24bitri 266 . . . . . . 7 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
262wfrdmcl 7666 . . . . . . . . . 10 (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹)
27 ssun3 3988 . . . . . . . . . 10 (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))
2826, 27syl 17 . . . . . . . . 9 (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))
2928a1i 11 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
30 ssun1 3986 . . . . . . . . . 10 dom 𝐹 ⊆ (dom 𝐹 ∪ {𝑧})
313, 30syl6eqss 3863 . . . . . . . . 9 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ⊆ (dom 𝐹 ∪ {𝑧}))
32 predeq3 5908 . . . . . . . . . 10 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
3332sseq1d 3840 . . . . . . . . 9 (𝑦 = 𝑧 → (Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}) ↔ Pred(𝑅, 𝐴, 𝑧) ⊆ (dom 𝐹 ∪ {𝑧})))
3431, 33syl5ibrcom 238 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
3529, 34jaod 877 . . . . . . 7 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ((𝑦 ∈ dom 𝐹𝑦 = 𝑧) → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
3625, 35syl5bi 233 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
3736ralrimiv 3164 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))
3821, 37jca 503 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
391, 5, 2, 13wfrlem14 7671 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
4039ralrimiv 3164 . . . . 5 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))
4140adantr 468 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))
4215, 38, 413jca 1151 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
43 fneq2 6198 . . . . 5 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (𝐶 Fn 𝑥𝐶 Fn (dom 𝐹 ∪ {𝑧})))
44 sseq1 3834 . . . . . 6 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (𝑥𝐴 ↔ (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴))
45 sseq2 3835 . . . . . . 7 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
4645raleqbi1dv 3346 . . . . . 6 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
4744, 46anbi12d 618 . . . . 5 (𝑥 = (dom 𝐹 ∪ {𝑧}) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))))
48 raleq 3338 . . . . 5 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
4943, 47, 483anbi123d 1553 . . . 4 (𝑥 = (dom 𝐹 ∪ {𝑧}) → ((𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
5049spcegv 3498 . . 3 ((dom 𝐹 ∪ {𝑧}) ∈ V → ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
5112, 42, 50sylc 65 . 2 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5210, 11mpan2 674 . . . . 5 (dom 𝐹 ∈ V → (dom 𝐹 ∪ {𝑧}) ∈ V)
53 fnex 6713 . . . . 5 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ (dom 𝐹 ∪ {𝑧}) ∈ V) → 𝐶 ∈ V)
5452, 53sylan2 582 . . . 4 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ dom 𝐹 ∈ V) → 𝐶 ∈ V)
5515, 9, 54syl2anc 575 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ V)
56 fneq1 6197 . . . . . 6 (𝑓 = 𝐶 → (𝑓 Fn 𝑥𝐶 Fn 𝑥))
57 fveq1 6414 . . . . . . . 8 (𝑓 = 𝐶 → (𝑓𝑦) = (𝐶𝑦))
58 reseq1 5602 . . . . . . . . 9 (𝑓 = 𝐶 → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))
5958fveq2d 6419 . . . . . . . 8 (𝑓 = 𝐶 → (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))
6057, 59eqeq12d 2832 . . . . . . 7 (𝑓 = 𝐶 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
6160ralbidv 3185 . . . . . 6 (𝑓 = 𝐶 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
6256, 613anbi13d 1555 . . . . 5 (𝑓 = 𝐶 → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
6362exbidv 2012 . . . 4 (𝑓 = 𝐶 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
6463elabg 3557 . . 3 (𝐶 ∈ V → (𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
6555, 64syl 17 . 2 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
6651, 65mpbird 248 1 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  wex 1859  wcel 2157  {cab 2803  wral 3107  Vcvv 3402  cdif 3777  cun 3778  wss 3780  c0 4127  {csn 4381  cop 4387   Se wse 5279   We wwe 5280  dom cdm 5322  cres 5324  Predcpred 5903   Fn wfn 6103  cfv 6108  wrecscwrecs 7648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4975  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-id 5230  df-po 5243  df-so 5244  df-fr 5281  df-se 5282  df-we 5283  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-pred 5904  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-wrecs 7649
This theorem is referenced by:  wfrlem16  7673
  Copyright terms: Public domain W3C validator