MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem12 Structured version   Visualization version   GIF version

Theorem wfrlem12 7809
Description: Lemma for well-founded recursion. Here, we compute the value of the recursive definition generator. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfrfun.1 𝑅 We 𝐴
wfrfun.2 𝑅 Se 𝐴
wfrfun.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrlem12 (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑅
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem wfrlem12
Dummy variables 𝑓 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3435 . . 3 𝑦 ∈ V
21eldm2 5648 . 2 (𝑦 ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐹)
3 wfrfun.3 . . . . . . 7 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
4 df-wrecs 7789 . . . . . . 7 wrecs(𝑅, 𝐴, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
53, 4eqtri 2817 . . . . . 6 𝐹 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
65eleq2i 2872 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
7 eluniab 4750 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))))
86, 7bitri 276 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))))
9 abid 2777 . . . . . . . 8 (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
10 elssuni 4768 . . . . . . . . 9 (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑓 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
1110, 5syl6sseqr 3934 . . . . . . . 8 (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑓𝐹)
129, 11sylbir 236 . . . . . . 7 (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → 𝑓𝐹)
13 fnop 6322 . . . . . . . . . . 11 ((𝑓 Fn 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → 𝑦𝑥)
1413ex 413 . . . . . . . . . 10 (𝑓 Fn 𝑥 → (⟨𝑦, 𝑧⟩ ∈ 𝑓𝑦𝑥))
15 rsp 3170 . . . . . . . . . . . . . . 15 (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑦𝑥 → (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
1615impcom 408 . . . . . . . . . . . . . 14 ((𝑦𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
17 rsp 3170 . . . . . . . . . . . . . . . . 17 (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦𝑥 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥))
18 fndm 6317 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥)
1918sseq2d 3915 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 Fn 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥))
2018eleq2d 2866 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 Fn 𝑥 → (𝑦 ∈ dom 𝑓𝑦𝑥))
2119, 20anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 Fn 𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥𝑦𝑥)))
2221biimprd 249 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 Fn 𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥𝑦𝑥) → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)))
2322expd 416 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 Fn 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓))))
2423impcom 408 . . . . . . . . . . . . . . . . . . . 20 ((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥𝑓 Fn 𝑥) → (𝑦𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)))
25 wfrfun.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅 We 𝐴
26 wfrfun.2 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅 Se 𝐴
2725, 26, 3wfrfun 7808 . . . . . . . . . . . . . . . . . . . . . . 23 Fun 𝐹
28 funssfv 6551 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐹𝑓𝐹𝑦 ∈ dom 𝑓) → (𝐹𝑦) = (𝑓𝑦))
29283adant3l 1171 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → (𝐹𝑦) = (𝑓𝑦))
30 fun2ssres 6261 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝐹𝑓𝐹 ∧ Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))
31303adant3r 1172 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))
3231fveq2d 6534 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
3329, 32eqeq12d 2808 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → ((𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
3433biimprd 249 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
3527, 34mp3an1 1438 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
3635expcom 414 . . . . . . . . . . . . . . . . . . . . 21 ((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓) → (𝑓𝐹 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
3736com23 86 . . . . . . . . . . . . . . . . . . . 20 ((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓) → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
3824, 37syl6com 37 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥𝑓 Fn 𝑥) → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))
3938expd 416 . . . . . . . . . . . . . . . . . 18 (𝑦𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑓 Fn 𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4039com34 91 . . . . . . . . . . . . . . . . 17 (𝑦𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4117, 40sylcom 30 . . . . . . . . . . . . . . . 16 (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4241adantl 482 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑦𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4342com14 96 . . . . . . . . . . . . . 14 (𝑓 Fn 𝑥 → (𝑦𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4416, 43syl7 74 . . . . . . . . . . . . 13 (𝑓 Fn 𝑥 → (𝑦𝑥 → ((𝑦𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4544exp4a 432 . . . . . . . . . . . 12 (𝑓 Fn 𝑥 → (𝑦𝑥 → (𝑦𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))))
4645pm2.43d 53 . . . . . . . . . . 11 (𝑓 Fn 𝑥 → (𝑦𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4746com34 91 . . . . . . . . . 10 (𝑓 Fn 𝑥 → (𝑦𝑥 → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4814, 47syldc 48 . . . . . . . . 9 (⟨𝑦, 𝑧⟩ ∈ 𝑓 → (𝑓 Fn 𝑥 → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
49483impd 1339 . . . . . . . 8 (⟨𝑦, 𝑧⟩ ∈ 𝑓 → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
5049exlimdv 1909 . . . . . . 7 (⟨𝑦, 𝑧⟩ ∈ 𝑓 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
5112, 50mpdi 45 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ 𝑓 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5251imp 407 . . . . 5 ((⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
5352exlimiv 1906 . . . 4 (∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
548, 53sylbi 218 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
5554exlimiv 1906 . 2 (∃𝑧𝑦, 𝑧⟩ ∈ 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
562, 55sylbi 218 1 (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1078   = wceq 1520  wex 1759  wcel 2079  {cab 2773  wral 3103  wss 3854  cop 4472   cuni 4739   Se wse 5392   We wwe 5393  dom cdm 5435  cres 5437  Predcpred 6014  Fun wfun 6211   Fn wfn 6212  cfv 6217  wrecscwrecs 7788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-iota 6181  df-fun 6219  df-fn 6220  df-fv 6225  df-wrecs 7789
This theorem is referenced by:  wfrlem14  7811  wfr2a  7815
  Copyright terms: Public domain W3C validator