Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmv1lelem3 Structured version   Visualization version   GIF version

Theorem hoidmv1lelem3 46564
Description: The dimensional volume of a 1-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is the nonempty, finite generalized sum, sub case in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmv1lelem3.a (𝜑𝐴 ∈ ℝ)
hoidmv1lelem3.b (𝜑𝐵 ∈ ℝ)
hoidmv1lelem3.l (𝜑𝐴 < 𝐵)
hoidmv1lelem3.c (𝜑𝐶:ℕ⟶ℝ)
hoidmv1lelem3.d (𝜑𝐷:ℕ⟶ℝ)
hoidmv1lelem3.x (𝜑 → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
hoidmv1lelem3.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
hoidmv1lelem3.u 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
hoidmv1lelem3.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
hoidmv1lelem3 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
Distinct variable groups:   𝐴,𝑗,𝑧   𝐵,𝑗,𝑧   𝐶,𝑗,𝑧   𝐷,𝑗,𝑧   𝑆,𝑗,𝑧   𝑈,𝑗,𝑧   𝜑,𝑗,𝑧

Proof of Theorem hoidmv1lelem3
Dummy variables 𝑦 𝑖 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoidmv1lelem3.b . . 3 (𝜑𝐵 ∈ ℝ)
2 hoidmv1lelem3.a . . 3 (𝜑𝐴 ∈ ℝ)
31, 2resubcld 11582 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ)
4 nnex 12168 . . . . . . 7 ℕ ∈ V
54a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
6 icossicc 13373 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
7 0xr 11197 . . . . . . . . . 10 0 ∈ ℝ*
87a1i 11 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 0 ∈ ℝ*)
9 pnfxr 11204 . . . . . . . . . 10 +∞ ∈ ℝ*
109a1i 11 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → +∞ ∈ ℝ*)
11 hoidmv1lelem3.c . . . . . . . . . . . 12 (𝜑𝐶:ℕ⟶ℝ)
1211ffvelcdmda 7038 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ)
13 hoidmv1lelem3.d . . . . . . . . . . . . 13 (𝜑𝐷:ℕ⟶ℝ)
1413ffvelcdmda 7038 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ)
151adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝐵 ∈ ℝ)
1614, 15ifcld 4531 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ)
17 volicore 46552 . . . . . . . . . . 11 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ)
1812, 16, 17syl2anc 584 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ)
1918rexrd 11200 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ*)
2016rexrd 11200 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ*)
21 icombl 25441 . . . . . . . . . . 11 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol)
2212, 20, 21syl2anc 584 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol)
23 volge0 45932 . . . . . . . . . 10 (((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol → 0 ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 0 ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2518ltpnfd 13057 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) < +∞)
268, 10, 19, 24, 25elicod 13332 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ (0[,)+∞))
276, 26sselid 3941 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ (0[,]+∞))
28 eqid 2729 . . . . . . 7 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2927, 28fmptd 7068 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))):ℕ⟶(0[,]+∞))
305, 29sge0xrcl 46356 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ*)
319a1i 11 . . . . 5 (𝜑 → +∞ ∈ ℝ*)
32 hoidmv1lelem3.r . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
3332rexrd 11200 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ*)
34 nfv 1914 . . . . . . 7 𝑗𝜑
35 volf 25406 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
3635a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
3714rexrd 11200 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ*)
38 icombl 25441 . . . . . . . . 9 (((𝐶𝑗) ∈ ℝ ∧ (𝐷𝑗) ∈ ℝ*) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
3912, 37, 38syl2anc 584 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
4036, 39ffvelcdmd 7039 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)(𝐷𝑗))) ∈ (0[,]+∞))
4112rexrd 11200 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ*)
4212leidd 11720 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ≤ (𝐶𝑗))
43 min1 13125 . . . . . . . . . 10 (((𝐷𝑗) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))
4414, 15, 43syl2anc 584 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))
45 icossico 13353 . . . . . . . . 9 ((((𝐶𝑗) ∈ ℝ* ∧ (𝐷𝑗) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
4641, 37, 42, 44, 45syl22anc 838 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
47 volss 25410 . . . . . . . 8 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol ∧ ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
4822, 39, 46, 47syl3anc 1373 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
4934, 5, 27, 40, 48sge0lempt 46381 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
5032ltpnfd 13057 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) < +∞)
5130, 33, 31, 49, 50xrlelttrd 13096 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) < +∞)
5230, 31, 51xrltned 45326 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ≠ +∞)
5352neneqd 2930 . . 3 (𝜑 → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) = +∞)
545, 29sge0repnf 46357 . . 3 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) = +∞))
5553, 54mpbird 257 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ)
561rexrd 11200 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
572, 1iccssred 13371 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
58 hoidmv1lelem3.u . . . . . . . . . . 11 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
59 ssrab2 4039 . . . . . . . . . . 11 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ⊆ (𝐴[,]𝐵)
6058, 59eqsstri 3990 . . . . . . . . . 10 𝑈 ⊆ (𝐴[,]𝐵)
61 hoidmv1lelem3.l . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
62 hoidmv1lelem3.s . . . . . . . . . . . 12 𝑆 = sup(𝑈, ℝ, < )
632, 1, 61, 11, 13, 32, 58, 62hoidmv1lelem1 46562 . . . . . . . . . . 11 (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
6463simp1d 1142 . . . . . . . . . 10 (𝜑𝑆𝑈)
6560, 64sselid 3941 . . . . . . . . 9 (𝜑𝑆 ∈ (𝐴[,]𝐵))
6657, 65sseldd 3944 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
6766rexrd 11200 . . . . . . 7 (𝜑𝑆 ∈ ℝ*)
68 simpl 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝜑)
69 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵𝑆) → ¬ 𝐵𝑆)
7068, 66syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝑆 ∈ ℝ)
7168, 1syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝐵 ∈ ℝ)
7270, 71ltnled 11297 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵𝑆) → (𝑆 < 𝐵 ↔ ¬ 𝐵𝑆))
7369, 72mpbird 257 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝑆 < 𝐵)
74 hoidmv1lelem3.x . . . . . . . . . . . . 13 (𝜑 → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
7574adantr 480 . . . . . . . . . . . 12 ((𝜑𝑆 < 𝐵) → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
762rexrd 11200 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ*)
7776adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐴 ∈ ℝ*)
7856adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐵 ∈ ℝ*)
7967adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝑆 ∈ ℝ*)
8060, 57sstrid 3955 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ⊆ ℝ)
8164ne0d 4301 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ≠ ∅)
8263simp3d 1144 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
8363simp2d 1143 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝑈)
84 suprub 12120 . . . . . . . . . . . . . . . 16 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝐴𝑈) → 𝐴 ≤ sup(𝑈, ℝ, < ))
8580, 81, 82, 83, 84syl31anc 1375 . . . . . . . . . . . . . . 15 (𝜑𝐴 ≤ sup(𝑈, ℝ, < ))
8685, 62breqtrrdi 5144 . . . . . . . . . . . . . 14 (𝜑𝐴𝑆)
8786adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐴𝑆)
88 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝑆 < 𝐵)
8977, 78, 79, 87, 88elicod 13332 . . . . . . . . . . . 12 ((𝜑𝑆 < 𝐵) → 𝑆 ∈ (𝐴[,)𝐵))
9075, 89sseldd 3944 . . . . . . . . . . 11 ((𝜑𝑆 < 𝐵) → 𝑆 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
91 eliun 4955 . . . . . . . . . . 11 (𝑆 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)) ↔ ∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
9290, 91sylib 218 . . . . . . . . . 10 ((𝜑𝑆 < 𝐵) → ∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
932adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐴 ∈ ℝ)
94933ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐴 ∈ ℝ)
951adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐵 ∈ ℝ)
96953ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐵 ∈ ℝ)
9711adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐶:ℕ⟶ℝ)
98973ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐶:ℕ⟶ℝ)
9913adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐷:ℕ⟶ℝ)
100993ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐷:ℕ⟶ℝ)
101 fveq2 6840 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
102 fveq2 6840 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝐷𝑖) = (𝐷𝑗))
103101, 102oveq12d 7387 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → ((𝐶𝑖)[,)(𝐷𝑖)) = ((𝐶𝑗)[,)(𝐷𝑗)))
104103fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (vol‘((𝐶𝑖)[,)(𝐷𝑖))) = (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
105104cbvmptv 5206 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
106105fveq2i 6843 . . . . . . . . . . . . . . . 16 ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗)))))
107106, 32eqeltrid 2832 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
108107adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
1091083ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
110102breq1d 5112 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 → ((𝐷𝑖) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝑧))
111110, 102ifbieq1d 4509 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗 → if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧) = if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))
112101, 111oveq12d 7387 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → ((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))
113112fveq2d 6844 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
114113cbvmptv 5206 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
115114eqcomi 2738 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))))
116115fveq2i 6843 . . . . . . . . . . . . . . . 16 ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))
117116breq2i 5110 . . . . . . . . . . . . . . 15 ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))))))
118117rabbii 3408 . . . . . . . . . . . . . 14 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))}
11958, 118eqtri 2752 . . . . . . . . . . . . 13 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))}
12064adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝑆𝑈)
1211203ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆𝑈)
122873ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐴𝑆)
123883ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆 < 𝐵)
124 simp2 1137 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑗 ∈ ℕ)
125 simp3 1138 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
126 eqid 2729 . . . . . . . . . . . . 13 if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) = if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)
12794, 96, 98, 100, 109, 119, 121, 122, 123, 124, 125, 126hoidmv1lelem2 46563 . . . . . . . . . . . 12 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → ∃𝑢𝑈 𝑆 < 𝑢)
1281273exp 1119 . . . . . . . . . . 11 ((𝜑𝑆 < 𝐵) → (𝑗 ∈ ℕ → (𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)) → ∃𝑢𝑈 𝑆 < 𝑢)))
129128rexlimdv 3132 . . . . . . . . . 10 ((𝜑𝑆 < 𝐵) → (∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)) → ∃𝑢𝑈 𝑆 < 𝑢))
13092, 129mpd 15 . . . . . . . . 9 ((𝜑𝑆 < 𝐵) → ∃𝑢𝑈 𝑆 < 𝑢)
13168, 73, 130syl2anc 584 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵𝑆) → ∃𝑢𝑈 𝑆 < 𝑢)
13257adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → (𝐴[,]𝐵) ⊆ ℝ)
13360, 132sstrid 3955 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑈 ⊆ ℝ)
13481adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑈 ≠ ∅)
1352, 1jca 511 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
136135adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
13760a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑈 ⊆ (𝐴[,]𝐵))
13864adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑆𝑈)
139 iccsupr 13379 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑈 ⊆ (𝐴[,]𝐵) ∧ 𝑆𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
140136, 137, 138, 139syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
141140simp3d 1144 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
142 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑢𝑈)
143 suprub 12120 . . . . . . . . . . . . . 14 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
144133, 134, 141, 142, 143syl31anc 1375 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
145144, 62breqtrrdi 5144 . . . . . . . . . . . 12 ((𝜑𝑢𝑈) → 𝑢𝑆)
146145ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑢𝑈 𝑢𝑆)
14760sseli 3939 . . . . . . . . . . . . . . 15 (𝑢𝑈𝑢 ∈ (𝐴[,]𝐵))
148147adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑢 ∈ (𝐴[,]𝐵))
149132, 148sseldd 3944 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑢 ∈ ℝ)
15066adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑆 ∈ ℝ)
151149, 150lenltd 11296 . . . . . . . . . . . 12 ((𝜑𝑢𝑈) → (𝑢𝑆 ↔ ¬ 𝑆 < 𝑢))
152151ralbidva 3154 . . . . . . . . . . 11 (𝜑 → (∀𝑢𝑈 𝑢𝑆 ↔ ∀𝑢𝑈 ¬ 𝑆 < 𝑢))
153146, 152mpbid 232 . . . . . . . . . 10 (𝜑 → ∀𝑢𝑈 ¬ 𝑆 < 𝑢)
154 ralnex 3055 . . . . . . . . . 10 (∀𝑢𝑈 ¬ 𝑆 < 𝑢 ↔ ¬ ∃𝑢𝑈 𝑆 < 𝑢)
155153, 154sylib 218 . . . . . . . . 9 (𝜑 → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
156155adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵𝑆) → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
157131, 156condan 817 . . . . . . 7 (𝜑𝐵𝑆)
158 iccleub 13338 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑆 ∈ (𝐴[,]𝐵)) → 𝑆𝐵)
15976, 56, 65, 158syl3anc 1373 . . . . . . 7 (𝜑𝑆𝐵)
16056, 67, 157, 159xrletrid 13091 . . . . . 6 (𝜑𝐵 = 𝑆)
161160, 64eqeltrd 2828 . . . . 5 (𝜑𝐵𝑈)
162161, 58eleqtrdi 2838 . . . 4 (𝜑𝐵 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
163 oveq1 7376 . . . . . 6 (𝑧 = 𝐵 → (𝑧𝐴) = (𝐵𝐴))
164 breq2 5106 . . . . . . . . . . 11 (𝑧 = 𝐵 → ((𝐷𝑗) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝐵))
165 id 22 . . . . . . . . . . 11 (𝑧 = 𝐵𝑧 = 𝐵)
166164, 165ifbieq2d 4511 . . . . . . . . . 10 (𝑧 = 𝐵 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))
167166oveq2d 7385 . . . . . . . . 9 (𝑧 = 𝐵 → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))
168167fveq2d 6844 . . . . . . . 8 (𝑧 = 𝐵 → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
169168mpteq2dv 5196 . . . . . . 7 (𝑧 = 𝐵 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))
170169fveq2d 6844 . . . . . 6 (𝑧 = 𝐵 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))))
171163, 170breq12d 5115 . . . . 5 (𝑧 = 𝐵 → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
172171elrab 3656 . . . 4 (𝐵 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
173162, 172sylib 218 . . 3 (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
174173simprd 495 . 2 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))))
1753, 55, 32, 174, 49letrd 11307 1 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  c0 4292  ifcif 4484   ciun 4951   class class class wbr 5102  cmpt 5183  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  supcsup 9367  cr 11043  0cc0 11044  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cmin 11381  cn 12162  [,)cico 13284  [,]cicc 13285  volcvol 25340  Σ^csumge0 46333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-rest 17361  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-bases 22809  df-cmp 23250  df-ovol 25341  df-vol 25342  df-sumge0 46334
This theorem is referenced by:  hoidmv1le  46565
  Copyright terms: Public domain W3C validator