Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmv1lelem3 Structured version   Visualization version   GIF version

Theorem hoidmv1lelem3 45608
Description: The dimensional volume of a 1-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is the nonempty, finite generalized sum, sub case in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmv1lelem3.a (πœ‘ β†’ 𝐴 ∈ ℝ)
hoidmv1lelem3.b (πœ‘ β†’ 𝐡 ∈ ℝ)
hoidmv1lelem3.l (πœ‘ β†’ 𝐴 < 𝐡)
hoidmv1lelem3.c (πœ‘ β†’ 𝐢:β„•βŸΆβ„)
hoidmv1lelem3.d (πœ‘ β†’ 𝐷:β„•βŸΆβ„)
hoidmv1lelem3.x (πœ‘ β†’ (𝐴[,)𝐡) βŠ† βˆͺ 𝑗 ∈ β„• ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)))
hoidmv1lelem3.r (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))) ∈ ℝ)
hoidmv1lelem3.u π‘ˆ = {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))))}
hoidmv1lelem3.s 𝑆 = sup(π‘ˆ, ℝ, < )
Assertion
Ref Expression
hoidmv1lelem3 (πœ‘ β†’ (𝐡 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))))
Distinct variable groups:   𝐴,𝑗,𝑧   𝐡,𝑗,𝑧   𝐢,𝑗,𝑧   𝐷,𝑗,𝑧   𝑆,𝑗,𝑧   π‘ˆ,𝑗,𝑧   πœ‘,𝑗,𝑧

Proof of Theorem hoidmv1lelem3
Dummy variables 𝑦 𝑖 𝑒 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoidmv1lelem3.b . . 3 (πœ‘ β†’ 𝐡 ∈ ℝ)
2 hoidmv1lelem3.a . . 3 (πœ‘ β†’ 𝐴 ∈ ℝ)
31, 2resubcld 11647 . 2 (πœ‘ β†’ (𝐡 βˆ’ 𝐴) ∈ ℝ)
4 nnex 12223 . . . . . . 7 β„• ∈ V
54a1i 11 . . . . . 6 (πœ‘ β†’ β„• ∈ V)
6 icossicc 13418 . . . . . . . 8 (0[,)+∞) βŠ† (0[,]+∞)
7 0xr 11266 . . . . . . . . . 10 0 ∈ ℝ*
87a1i 11 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ 0 ∈ ℝ*)
9 pnfxr 11273 . . . . . . . . . 10 +∞ ∈ ℝ*
109a1i 11 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ +∞ ∈ ℝ*)
11 hoidmv1lelem3.c . . . . . . . . . . . 12 (πœ‘ β†’ 𝐢:β„•βŸΆβ„)
1211ffvelcdmda 7086 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (πΆβ€˜π‘—) ∈ ℝ)
13 hoidmv1lelem3.d . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐷:β„•βŸΆβ„)
1413ffvelcdmda 7086 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (π·β€˜π‘—) ∈ ℝ)
151adantr 480 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ 𝐡 ∈ ℝ)
1614, 15ifcld 4574 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡) ∈ ℝ)
17 volicore 45596 . . . . . . . . . . 11 (((πΆβ€˜π‘—) ∈ ℝ ∧ if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡) ∈ ℝ) β†’ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))) ∈ ℝ)
1812, 16, 17syl2anc 583 . . . . . . . . . 10 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))) ∈ ℝ)
1918rexrd 11269 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))) ∈ ℝ*)
2016rexrd 11269 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡) ∈ ℝ*)
21 icombl 25314 . . . . . . . . . . 11 (((πΆβ€˜π‘—) ∈ ℝ ∧ if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡) ∈ ℝ*) β†’ ((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)) ∈ dom vol)
2212, 20, 21syl2anc 583 . . . . . . . . . 10 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)) ∈ dom vol)
23 volge0 44976 . . . . . . . . . 10 (((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)) ∈ dom vol β†’ 0 ≀ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))
2422, 23syl 17 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ 0 ≀ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))
2518ltpnfd 13106 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))) < +∞)
268, 10, 19, 24, 25elicod 13379 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))) ∈ (0[,)+∞))
276, 26sselid 3980 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))) ∈ (0[,]+∞))
28 eqid 2731 . . . . . . 7 (𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)))) = (𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))
2927, 28fmptd 7115 . . . . . 6 (πœ‘ β†’ (𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)))):β„•βŸΆ(0[,]+∞))
305, 29sge0xrcl 45400 . . . . 5 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))) ∈ ℝ*)
319a1i 11 . . . . 5 (πœ‘ β†’ +∞ ∈ ℝ*)
32 hoidmv1lelem3.r . . . . . . 7 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))) ∈ ℝ)
3332rexrd 11269 . . . . . 6 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))) ∈ ℝ*)
34 nfv 1916 . . . . . . 7 β„²π‘—πœ‘
35 volf 25279 . . . . . . . . 9 vol:dom vol⟢(0[,]+∞)
3635a1i 11 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ vol:dom vol⟢(0[,]+∞))
3714rexrd 11269 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (π·β€˜π‘—) ∈ ℝ*)
38 icombl 25314 . . . . . . . . 9 (((πΆβ€˜π‘—) ∈ ℝ ∧ (π·β€˜π‘—) ∈ ℝ*) β†’ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)) ∈ dom vol)
3912, 37, 38syl2anc 583 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)) ∈ dom vol)
4036, 39ffvelcdmd 7087 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))) ∈ (0[,]+∞))
4112rexrd 11269 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (πΆβ€˜π‘—) ∈ ℝ*)
4212leidd 11785 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (πΆβ€˜π‘—) ≀ (πΆβ€˜π‘—))
43 min1 13173 . . . . . . . . . 10 (((π·β€˜π‘—) ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡) ≀ (π·β€˜π‘—))
4414, 15, 43syl2anc 583 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡) ≀ (π·β€˜π‘—))
45 icossico 13399 . . . . . . . . 9 ((((πΆβ€˜π‘—) ∈ ℝ* ∧ (π·β€˜π‘—) ∈ ℝ*) ∧ ((πΆβ€˜π‘—) ≀ (πΆβ€˜π‘—) ∧ if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡) ≀ (π·β€˜π‘—))) β†’ ((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)) βŠ† ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)))
4641, 37, 42, 44, 45syl22anc 836 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)) βŠ† ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)))
47 volss 25283 . . . . . . . 8 ((((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)) ∈ dom vol ∧ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)) ∈ dom vol ∧ ((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)) βŠ† ((πΆβ€˜π‘—)[,)(π·β€˜π‘—))) β†’ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))) ≀ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))
4822, 39, 46, 47syl3anc 1370 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))) ≀ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))
4934, 5, 27, 40, 48sge0lempt 45425 . . . . . 6 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))))
5032ltpnfd 13106 . . . . . 6 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))) < +∞)
5130, 33, 31, 49, 50xrlelttrd 13144 . . . . 5 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))) < +∞)
5230, 31, 51xrltned 44366 . . . 4 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))) β‰  +∞)
5352neneqd 2944 . . 3 (πœ‘ β†’ Β¬ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))) = +∞)
545, 29sge0repnf 45401 . . 3 (πœ‘ β†’ ((Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))) ∈ ℝ ↔ Β¬ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))) = +∞))
5553, 54mpbird 257 . 2 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))) ∈ ℝ)
561rexrd 11269 . . . . . . 7 (πœ‘ β†’ 𝐡 ∈ ℝ*)
572, 1iccssred 13416 . . . . . . . . 9 (πœ‘ β†’ (𝐴[,]𝐡) βŠ† ℝ)
58 hoidmv1lelem3.u . . . . . . . . . . 11 π‘ˆ = {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))))}
59 ssrab2 4077 . . . . . . . . . . 11 {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))))} βŠ† (𝐴[,]𝐡)
6058, 59eqsstri 4016 . . . . . . . . . 10 π‘ˆ βŠ† (𝐴[,]𝐡)
61 hoidmv1lelem3.l . . . . . . . . . . . 12 (πœ‘ β†’ 𝐴 < 𝐡)
62 hoidmv1lelem3.s . . . . . . . . . . . 12 𝑆 = sup(π‘ˆ, ℝ, < )
632, 1, 61, 11, 13, 32, 58, 62hoidmv1lelem1 45606 . . . . . . . . . . 11 (πœ‘ β†’ (𝑆 ∈ π‘ˆ ∧ 𝐴 ∈ π‘ˆ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ π‘ˆ 𝑦 ≀ π‘₯))
6463simp1d 1141 . . . . . . . . . 10 (πœ‘ β†’ 𝑆 ∈ π‘ˆ)
6560, 64sselid 3980 . . . . . . . . 9 (πœ‘ β†’ 𝑆 ∈ (𝐴[,]𝐡))
6657, 65sseldd 3983 . . . . . . . 8 (πœ‘ β†’ 𝑆 ∈ ℝ)
6766rexrd 11269 . . . . . . 7 (πœ‘ β†’ 𝑆 ∈ ℝ*)
68 simpl 482 . . . . . . . . 9 ((πœ‘ ∧ Β¬ 𝐡 ≀ 𝑆) β†’ πœ‘)
69 simpr 484 . . . . . . . . . 10 ((πœ‘ ∧ Β¬ 𝐡 ≀ 𝑆) β†’ Β¬ 𝐡 ≀ 𝑆)
7068, 66syl 17 . . . . . . . . . . 11 ((πœ‘ ∧ Β¬ 𝐡 ≀ 𝑆) β†’ 𝑆 ∈ ℝ)
7168, 1syl 17 . . . . . . . . . . 11 ((πœ‘ ∧ Β¬ 𝐡 ≀ 𝑆) β†’ 𝐡 ∈ ℝ)
7270, 71ltnled 11366 . . . . . . . . . 10 ((πœ‘ ∧ Β¬ 𝐡 ≀ 𝑆) β†’ (𝑆 < 𝐡 ↔ Β¬ 𝐡 ≀ 𝑆))
7369, 72mpbird 257 . . . . . . . . 9 ((πœ‘ ∧ Β¬ 𝐡 ≀ 𝑆) β†’ 𝑆 < 𝐡)
74 hoidmv1lelem3.x . . . . . . . . . . . . 13 (πœ‘ β†’ (𝐴[,)𝐡) βŠ† βˆͺ 𝑗 ∈ β„• ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)))
7574adantr 480 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ (𝐴[,)𝐡) βŠ† βˆͺ 𝑗 ∈ β„• ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)))
762rexrd 11269 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐴 ∈ ℝ*)
7776adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ 𝐴 ∈ ℝ*)
7856adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ 𝐡 ∈ ℝ*)
7967adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ 𝑆 ∈ ℝ*)
8060, 57sstrid 3993 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ π‘ˆ βŠ† ℝ)
8164ne0d 4335 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ π‘ˆ β‰  βˆ…)
8263simp3d 1143 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ π‘ˆ 𝑦 ≀ π‘₯)
8363simp2d 1142 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝐴 ∈ π‘ˆ)
84 suprub 12180 . . . . . . . . . . . . . . . 16 (((π‘ˆ βŠ† ℝ ∧ π‘ˆ β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ π‘ˆ 𝑦 ≀ π‘₯) ∧ 𝐴 ∈ π‘ˆ) β†’ 𝐴 ≀ sup(π‘ˆ, ℝ, < ))
8580, 81, 82, 83, 84syl31anc 1372 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐴 ≀ sup(π‘ˆ, ℝ, < ))
8685, 62breqtrrdi 5190 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐴 ≀ 𝑆)
8786adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ 𝐴 ≀ 𝑆)
88 simpr 484 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ 𝑆 < 𝐡)
8977, 78, 79, 87, 88elicod 13379 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ 𝑆 ∈ (𝐴[,)𝐡))
9075, 89sseldd 3983 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ 𝑆 ∈ βˆͺ 𝑗 ∈ β„• ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)))
91 eliun 5001 . . . . . . . . . . 11 (𝑆 ∈ βˆͺ 𝑗 ∈ β„• ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)) ↔ βˆƒπ‘— ∈ β„• 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)))
9290, 91sylib 217 . . . . . . . . . 10 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ βˆƒπ‘— ∈ β„• 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)))
932adantr 480 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ 𝐴 ∈ ℝ)
94933ad2ant1 1132 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑆 < 𝐡) ∧ 𝑗 ∈ β„• ∧ 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—))) β†’ 𝐴 ∈ ℝ)
951adantr 480 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ 𝐡 ∈ ℝ)
96953ad2ant1 1132 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑆 < 𝐡) ∧ 𝑗 ∈ β„• ∧ 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—))) β†’ 𝐡 ∈ ℝ)
9711adantr 480 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ 𝐢:β„•βŸΆβ„)
98973ad2ant1 1132 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑆 < 𝐡) ∧ 𝑗 ∈ β„• ∧ 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—))) β†’ 𝐢:β„•βŸΆβ„)
9913adantr 480 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ 𝐷:β„•βŸΆβ„)
100993ad2ant1 1132 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑆 < 𝐡) ∧ 𝑗 ∈ β„• ∧ 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—))) β†’ 𝐷:β„•βŸΆβ„)
101 fveq2 6891 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 β†’ (πΆβ€˜π‘–) = (πΆβ€˜π‘—))
102 fveq2 6891 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 β†’ (π·β€˜π‘–) = (π·β€˜π‘—))
103101, 102oveq12d 7430 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 β†’ ((πΆβ€˜π‘–)[,)(π·β€˜π‘–)) = ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)))
104103fveq2d 6895 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 β†’ (volβ€˜((πΆβ€˜π‘–)[,)(π·β€˜π‘–))) = (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))
105104cbvmptv 5261 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘–)[,)(π·β€˜π‘–)))) = (𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))
106105fveq2i 6894 . . . . . . . . . . . . . . . 16 (Ξ£^β€˜(𝑖 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘–)[,)(π·β€˜π‘–))))) = (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—)))))
107106, 32eqeltrid 2836 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (Ξ£^β€˜(𝑖 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘–)[,)(π·β€˜π‘–))))) ∈ ℝ)
108107adantr 480 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ (Ξ£^β€˜(𝑖 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘–)[,)(π·β€˜π‘–))))) ∈ ℝ)
1091083ad2ant1 1132 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑆 < 𝐡) ∧ 𝑗 ∈ β„• ∧ 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—))) β†’ (Ξ£^β€˜(𝑖 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘–)[,)(π·β€˜π‘–))))) ∈ ℝ)
110102breq1d 5158 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 β†’ ((π·β€˜π‘–) ≀ 𝑧 ↔ (π·β€˜π‘—) ≀ 𝑧))
111110, 102ifbieq1d 4552 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗 β†’ if((π·β€˜π‘–) ≀ 𝑧, (π·β€˜π‘–), 𝑧) = if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧))
112101, 111oveq12d 7430 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 β†’ ((πΆβ€˜π‘–)[,)if((π·β€˜π‘–) ≀ 𝑧, (π·β€˜π‘–), 𝑧)) = ((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))
113112fveq2d 6895 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 β†’ (volβ€˜((πΆβ€˜π‘–)[,)if((π·β€˜π‘–) ≀ 𝑧, (π·β€˜π‘–), 𝑧))) = (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧))))
114113cbvmptv 5261 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘–)[,)if((π·β€˜π‘–) ≀ 𝑧, (π·β€˜π‘–), 𝑧)))) = (𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧))))
115114eqcomi 2740 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))) = (𝑖 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘–)[,)if((π·β€˜π‘–) ≀ 𝑧, (π·β€˜π‘–), 𝑧))))
116115fveq2i 6894 . . . . . . . . . . . . . . . 16 (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧))))) = (Ξ£^β€˜(𝑖 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘–)[,)if((π·β€˜π‘–) ≀ 𝑧, (π·β€˜π‘–), 𝑧)))))
117116breq2i 5156 . . . . . . . . . . . . . . 15 ((𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧))))) ↔ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑖 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘–)[,)if((π·β€˜π‘–) ≀ 𝑧, (π·β€˜π‘–), 𝑧))))))
118117rabbii 3437 . . . . . . . . . . . . . 14 {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))))} = {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑖 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘–)[,)if((π·β€˜π‘–) ≀ 𝑧, (π·β€˜π‘–), 𝑧)))))}
11958, 118eqtri 2759 . . . . . . . . . . . . 13 π‘ˆ = {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑖 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘–)[,)if((π·β€˜π‘–) ≀ 𝑧, (π·β€˜π‘–), 𝑧)))))}
12064adantr 480 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ 𝑆 ∈ π‘ˆ)
1211203ad2ant1 1132 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑆 < 𝐡) ∧ 𝑗 ∈ β„• ∧ 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—))) β†’ 𝑆 ∈ π‘ˆ)
122873ad2ant1 1132 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑆 < 𝐡) ∧ 𝑗 ∈ β„• ∧ 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—))) β†’ 𝐴 ≀ 𝑆)
123883ad2ant1 1132 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑆 < 𝐡) ∧ 𝑗 ∈ β„• ∧ 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—))) β†’ 𝑆 < 𝐡)
124 simp2 1136 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑆 < 𝐡) ∧ 𝑗 ∈ β„• ∧ 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—))) β†’ 𝑗 ∈ β„•)
125 simp3 1137 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑆 < 𝐡) ∧ 𝑗 ∈ β„• ∧ 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—))) β†’ 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)))
126 eqid 2731 . . . . . . . . . . . . 13 if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡) = if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)
12794, 96, 98, 100, 109, 119, 121, 122, 123, 124, 125, 126hoidmv1lelem2 45607 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑆 < 𝐡) ∧ 𝑗 ∈ β„• ∧ 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—))) β†’ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒)
1281273exp 1118 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ (𝑗 ∈ β„• β†’ (𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)) β†’ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒)))
129128rexlimdv 3152 . . . . . . . . . 10 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ (βˆƒπ‘— ∈ β„• 𝑆 ∈ ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)) β†’ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒))
13092, 129mpd 15 . . . . . . . . 9 ((πœ‘ ∧ 𝑆 < 𝐡) β†’ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒)
13168, 73, 130syl2anc 583 . . . . . . . 8 ((πœ‘ ∧ Β¬ 𝐡 ≀ 𝑆) β†’ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒)
13257adantr 480 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ (𝐴[,]𝐡) βŠ† ℝ)
13360, 132sstrid 3993 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ π‘ˆ βŠ† ℝ)
13481adantr 480 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ π‘ˆ β‰  βˆ…)
1352, 1jca 511 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ))
136135adantr 480 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ (𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ))
13760a1i 11 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ π‘ˆ βŠ† (𝐴[,]𝐡))
13864adantr 480 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ 𝑆 ∈ π‘ˆ)
139 iccsupr 13424 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) ∧ π‘ˆ βŠ† (𝐴[,]𝐡) ∧ 𝑆 ∈ π‘ˆ) β†’ (π‘ˆ βŠ† ℝ ∧ π‘ˆ β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ π‘ˆ 𝑦 ≀ π‘₯))
140136, 137, 138, 139syl3anc 1370 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ (π‘ˆ βŠ† ℝ ∧ π‘ˆ β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ π‘ˆ 𝑦 ≀ π‘₯))
141140simp3d 1143 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ π‘ˆ 𝑦 ≀ π‘₯)
142 simpr 484 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ 𝑒 ∈ π‘ˆ)
143 suprub 12180 . . . . . . . . . . . . . 14 (((π‘ˆ βŠ† ℝ ∧ π‘ˆ β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ π‘ˆ 𝑦 ≀ π‘₯) ∧ 𝑒 ∈ π‘ˆ) β†’ 𝑒 ≀ sup(π‘ˆ, ℝ, < ))
144133, 134, 141, 142, 143syl31anc 1372 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ 𝑒 ≀ sup(π‘ˆ, ℝ, < ))
145144, 62breqtrrdi 5190 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ 𝑒 ≀ 𝑆)
146145ralrimiva 3145 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘’ ∈ π‘ˆ 𝑒 ≀ 𝑆)
14760sseli 3978 . . . . . . . . . . . . . . 15 (𝑒 ∈ π‘ˆ β†’ 𝑒 ∈ (𝐴[,]𝐡))
148147adantl 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ 𝑒 ∈ (𝐴[,]𝐡))
149132, 148sseldd 3983 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ 𝑒 ∈ ℝ)
15066adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ 𝑆 ∈ ℝ)
151149, 150lenltd 11365 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑒 ∈ π‘ˆ) β†’ (𝑒 ≀ 𝑆 ↔ Β¬ 𝑆 < 𝑒))
152151ralbidva 3174 . . . . . . . . . . 11 (πœ‘ β†’ (βˆ€π‘’ ∈ π‘ˆ 𝑒 ≀ 𝑆 ↔ βˆ€π‘’ ∈ π‘ˆ Β¬ 𝑆 < 𝑒))
153146, 152mpbid 231 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘’ ∈ π‘ˆ Β¬ 𝑆 < 𝑒)
154 ralnex 3071 . . . . . . . . . 10 (βˆ€π‘’ ∈ π‘ˆ Β¬ 𝑆 < 𝑒 ↔ Β¬ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒)
155153, 154sylib 217 . . . . . . . . 9 (πœ‘ β†’ Β¬ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒)
156155adantr 480 . . . . . . . 8 ((πœ‘ ∧ Β¬ 𝐡 ≀ 𝑆) β†’ Β¬ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒)
157131, 156condan 815 . . . . . . 7 (πœ‘ β†’ 𝐡 ≀ 𝑆)
158 iccleub 13384 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝑆 ∈ (𝐴[,]𝐡)) β†’ 𝑆 ≀ 𝐡)
15976, 56, 65, 158syl3anc 1370 . . . . . . 7 (πœ‘ β†’ 𝑆 ≀ 𝐡)
16056, 67, 157, 159xrletrid 13139 . . . . . 6 (πœ‘ β†’ 𝐡 = 𝑆)
161160, 64eqeltrd 2832 . . . . 5 (πœ‘ β†’ 𝐡 ∈ π‘ˆ)
162161, 58eleqtrdi 2842 . . . 4 (πœ‘ β†’ 𝐡 ∈ {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))))})
163 oveq1 7419 . . . . . 6 (𝑧 = 𝐡 β†’ (𝑧 βˆ’ 𝐴) = (𝐡 βˆ’ 𝐴))
164 breq2 5152 . . . . . . . . . . 11 (𝑧 = 𝐡 β†’ ((π·β€˜π‘—) ≀ 𝑧 ↔ (π·β€˜π‘—) ≀ 𝐡))
165 id 22 . . . . . . . . . . 11 (𝑧 = 𝐡 β†’ 𝑧 = 𝐡)
166164, 165ifbieq2d 4554 . . . . . . . . . 10 (𝑧 = 𝐡 β†’ if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧) = if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))
167166oveq2d 7428 . . . . . . . . 9 (𝑧 = 𝐡 β†’ ((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)) = ((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)))
168167fveq2d 6895 . . . . . . . 8 (𝑧 = 𝐡 β†’ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧))) = (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))
169168mpteq2dv 5250 . . . . . . 7 (𝑧 = 𝐡 β†’ (𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))) = (𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)))))
170169fveq2d 6895 . . . . . 6 (𝑧 = 𝐡 β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧))))) = (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))))
171163, 170breq12d 5161 . . . . 5 (𝑧 = 𝐡 β†’ ((𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧))))) ↔ (𝐡 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)))))))
172171elrab 3683 . . . 4 (𝐡 ∈ {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))))} ↔ (𝐡 ∈ (𝐴[,]𝐡) ∧ (𝐡 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)))))))
173162, 172sylib 217 . . 3 (πœ‘ β†’ (𝐡 ∈ (𝐴[,]𝐡) ∧ (𝐡 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡)))))))
174173simprd 495 . 2 (πœ‘ β†’ (𝐡 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝐡, (π·β€˜π‘—), 𝐡))))))
1753, 55, 32, 174, 49letrd 11376 1 (πœ‘ β†’ (𝐡 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆ€wral 3060  βˆƒwrex 3069  {crab 3431  Vcvv 3473   βŠ† wss 3948  βˆ…c0 4322  ifcif 4528  βˆͺ ciun 4997   class class class wbr 5148   ↦ cmpt 5231  dom cdm 5676  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412  supcsup 9439  β„cr 11113  0cc0 11114  +∞cpnf 11250  β„*cxr 11252   < clt 11253   ≀ cle 11254   βˆ’ cmin 11449  β„•cn 12217  [,)cico 13331  [,]cicc 13332  volcvol 25213  Ξ£^csumge0 45377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-er 8707  df-map 8826  df-pm 8827  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fi 9410  df-sup 9441  df-inf 9442  df-oi 9509  df-dju 9900  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-rlim 15438  df-sum 15638  df-rest 17373  df-topgen 17394  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-top 22617  df-topon 22634  df-bases 22670  df-cmp 23112  df-ovol 25214  df-vol 25215  df-sumge0 45378
This theorem is referenced by:  hoidmv1le  45609
  Copyright terms: Public domain W3C validator