Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmv1lelem3 Structured version   Visualization version   GIF version

Theorem hoidmv1lelem3 44021
Description: The dimensional volume of a 1-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is the nonempty, finite generalized sum, sub case in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmv1lelem3.a (𝜑𝐴 ∈ ℝ)
hoidmv1lelem3.b (𝜑𝐵 ∈ ℝ)
hoidmv1lelem3.l (𝜑𝐴 < 𝐵)
hoidmv1lelem3.c (𝜑𝐶:ℕ⟶ℝ)
hoidmv1lelem3.d (𝜑𝐷:ℕ⟶ℝ)
hoidmv1lelem3.x (𝜑 → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
hoidmv1lelem3.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
hoidmv1lelem3.u 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
hoidmv1lelem3.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
hoidmv1lelem3 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
Distinct variable groups:   𝐴,𝑗,𝑧   𝐵,𝑗,𝑧   𝐶,𝑗,𝑧   𝐷,𝑗,𝑧   𝑆,𝑗,𝑧   𝑈,𝑗,𝑧   𝜑,𝑗,𝑧

Proof of Theorem hoidmv1lelem3
Dummy variables 𝑦 𝑖 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoidmv1lelem3.b . . 3 (𝜑𝐵 ∈ ℝ)
2 hoidmv1lelem3.a . . 3 (𝜑𝐴 ∈ ℝ)
31, 2resubcld 11333 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ)
4 nnex 11909 . . . . . . 7 ℕ ∈ V
54a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
6 icossicc 13097 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
7 0xr 10953 . . . . . . . . . 10 0 ∈ ℝ*
87a1i 11 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 0 ∈ ℝ*)
9 pnfxr 10960 . . . . . . . . . 10 +∞ ∈ ℝ*
109a1i 11 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → +∞ ∈ ℝ*)
11 hoidmv1lelem3.c . . . . . . . . . . . 12 (𝜑𝐶:ℕ⟶ℝ)
1211ffvelrnda 6943 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ)
13 hoidmv1lelem3.d . . . . . . . . . . . . 13 (𝜑𝐷:ℕ⟶ℝ)
1413ffvelrnda 6943 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ)
151adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝐵 ∈ ℝ)
1614, 15ifcld 4502 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ)
17 volicore 44009 . . . . . . . . . . 11 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ)
1812, 16, 17syl2anc 583 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ)
1918rexrd 10956 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ*)
2016rexrd 10956 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ*)
21 icombl 24633 . . . . . . . . . . 11 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol)
2212, 20, 21syl2anc 583 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol)
23 volge0 43392 . . . . . . . . . 10 (((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol → 0 ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 0 ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2518ltpnfd 12786 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) < +∞)
268, 10, 19, 24, 25elicod 13058 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ (0[,)+∞))
276, 26sselid 3915 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ (0[,]+∞))
28 eqid 2738 . . . . . . 7 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2927, 28fmptd 6970 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))):ℕ⟶(0[,]+∞))
305, 29sge0xrcl 43813 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ*)
319a1i 11 . . . . 5 (𝜑 → +∞ ∈ ℝ*)
32 hoidmv1lelem3.r . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
3332rexrd 10956 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ*)
34 nfv 1918 . . . . . . 7 𝑗𝜑
35 volf 24598 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
3635a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
3714rexrd 10956 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ*)
38 icombl 24633 . . . . . . . . 9 (((𝐶𝑗) ∈ ℝ ∧ (𝐷𝑗) ∈ ℝ*) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
3912, 37, 38syl2anc 583 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
4036, 39ffvelrnd 6944 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)(𝐷𝑗))) ∈ (0[,]+∞))
4112rexrd 10956 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ*)
4212leidd 11471 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ≤ (𝐶𝑗))
43 min1 12852 . . . . . . . . . 10 (((𝐷𝑗) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))
4414, 15, 43syl2anc 583 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))
45 icossico 13078 . . . . . . . . 9 ((((𝐶𝑗) ∈ ℝ* ∧ (𝐷𝑗) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
4641, 37, 42, 44, 45syl22anc 835 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
47 volss 24602 . . . . . . . 8 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol ∧ ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
4822, 39, 46, 47syl3anc 1369 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
4934, 5, 27, 40, 48sge0lempt 43838 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
5032ltpnfd 12786 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) < +∞)
5130, 33, 31, 49, 50xrlelttrd 12823 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) < +∞)
5230, 31, 51xrltned 42786 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ≠ +∞)
5352neneqd 2947 . . 3 (𝜑 → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) = +∞)
545, 29sge0repnf 43814 . . 3 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) = +∞))
5553, 54mpbird 256 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ)
561rexrd 10956 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
572, 1iccssred 13095 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
58 hoidmv1lelem3.u . . . . . . . . . . 11 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
59 ssrab2 4009 . . . . . . . . . . 11 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ⊆ (𝐴[,]𝐵)
6058, 59eqsstri 3951 . . . . . . . . . 10 𝑈 ⊆ (𝐴[,]𝐵)
61 hoidmv1lelem3.l . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
62 hoidmv1lelem3.s . . . . . . . . . . . 12 𝑆 = sup(𝑈, ℝ, < )
632, 1, 61, 11, 13, 32, 58, 62hoidmv1lelem1 44019 . . . . . . . . . . 11 (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
6463simp1d 1140 . . . . . . . . . 10 (𝜑𝑆𝑈)
6560, 64sselid 3915 . . . . . . . . 9 (𝜑𝑆 ∈ (𝐴[,]𝐵))
6657, 65sseldd 3918 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
6766rexrd 10956 . . . . . . 7 (𝜑𝑆 ∈ ℝ*)
68 simpl 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝜑)
69 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵𝑆) → ¬ 𝐵𝑆)
7068, 66syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝑆 ∈ ℝ)
7168, 1syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝐵 ∈ ℝ)
7270, 71ltnled 11052 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵𝑆) → (𝑆 < 𝐵 ↔ ¬ 𝐵𝑆))
7369, 72mpbird 256 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝑆 < 𝐵)
74 hoidmv1lelem3.x . . . . . . . . . . . . 13 (𝜑 → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
7574adantr 480 . . . . . . . . . . . 12 ((𝜑𝑆 < 𝐵) → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
762rexrd 10956 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ*)
7776adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐴 ∈ ℝ*)
7856adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐵 ∈ ℝ*)
7967adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝑆 ∈ ℝ*)
8060, 57sstrid 3928 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ⊆ ℝ)
8164ne0d 4266 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ≠ ∅)
8263simp3d 1142 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
8363simp2d 1141 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝑈)
84 suprub 11866 . . . . . . . . . . . . . . . 16 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝐴𝑈) → 𝐴 ≤ sup(𝑈, ℝ, < ))
8580, 81, 82, 83, 84syl31anc 1371 . . . . . . . . . . . . . . 15 (𝜑𝐴 ≤ sup(𝑈, ℝ, < ))
8685, 62breqtrrdi 5112 . . . . . . . . . . . . . 14 (𝜑𝐴𝑆)
8786adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐴𝑆)
88 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝑆 < 𝐵)
8977, 78, 79, 87, 88elicod 13058 . . . . . . . . . . . 12 ((𝜑𝑆 < 𝐵) → 𝑆 ∈ (𝐴[,)𝐵))
9075, 89sseldd 3918 . . . . . . . . . . 11 ((𝜑𝑆 < 𝐵) → 𝑆 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
91 eliun 4925 . . . . . . . . . . 11 (𝑆 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)) ↔ ∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
9290, 91sylib 217 . . . . . . . . . 10 ((𝜑𝑆 < 𝐵) → ∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
932adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐴 ∈ ℝ)
94933ad2ant1 1131 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐴 ∈ ℝ)
951adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐵 ∈ ℝ)
96953ad2ant1 1131 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐵 ∈ ℝ)
9711adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐶:ℕ⟶ℝ)
98973ad2ant1 1131 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐶:ℕ⟶ℝ)
9913adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐷:ℕ⟶ℝ)
100993ad2ant1 1131 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐷:ℕ⟶ℝ)
101 fveq2 6756 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
102 fveq2 6756 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝐷𝑖) = (𝐷𝑗))
103101, 102oveq12d 7273 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → ((𝐶𝑖)[,)(𝐷𝑖)) = ((𝐶𝑗)[,)(𝐷𝑗)))
104103fveq2d 6760 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (vol‘((𝐶𝑖)[,)(𝐷𝑖))) = (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
105104cbvmptv 5183 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
106105fveq2i 6759 . . . . . . . . . . . . . . . 16 ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗)))))
107106, 32eqeltrid 2843 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
108107adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
1091083ad2ant1 1131 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
110102breq1d 5080 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 → ((𝐷𝑖) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝑧))
111110, 102ifbieq1d 4480 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗 → if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧) = if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))
112101, 111oveq12d 7273 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → ((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))
113112fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
114113cbvmptv 5183 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
115114eqcomi 2747 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))))
116115fveq2i 6759 . . . . . . . . . . . . . . . 16 ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))
117116breq2i 5078 . . . . . . . . . . . . . . 15 ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))))))
118117rabbii 3397 . . . . . . . . . . . . . 14 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))}
11958, 118eqtri 2766 . . . . . . . . . . . . 13 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))}
12064adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝑆𝑈)
1211203ad2ant1 1131 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆𝑈)
122873ad2ant1 1131 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐴𝑆)
123883ad2ant1 1131 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆 < 𝐵)
124 simp2 1135 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑗 ∈ ℕ)
125 simp3 1136 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
126 eqid 2738 . . . . . . . . . . . . 13 if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) = if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)
12794, 96, 98, 100, 109, 119, 121, 122, 123, 124, 125, 126hoidmv1lelem2 44020 . . . . . . . . . . . 12 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → ∃𝑢𝑈 𝑆 < 𝑢)
1281273exp 1117 . . . . . . . . . . 11 ((𝜑𝑆 < 𝐵) → (𝑗 ∈ ℕ → (𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)) → ∃𝑢𝑈 𝑆 < 𝑢)))
129128rexlimdv 3211 . . . . . . . . . 10 ((𝜑𝑆 < 𝐵) → (∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)) → ∃𝑢𝑈 𝑆 < 𝑢))
13092, 129mpd 15 . . . . . . . . 9 ((𝜑𝑆 < 𝐵) → ∃𝑢𝑈 𝑆 < 𝑢)
13168, 73, 130syl2anc 583 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵𝑆) → ∃𝑢𝑈 𝑆 < 𝑢)
13257adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → (𝐴[,]𝐵) ⊆ ℝ)
13360, 132sstrid 3928 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑈 ⊆ ℝ)
13481adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑈 ≠ ∅)
1352, 1jca 511 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
136135adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
13760a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑈 ⊆ (𝐴[,]𝐵))
13864adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑆𝑈)
139 iccsupr 13103 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑈 ⊆ (𝐴[,]𝐵) ∧ 𝑆𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
140136, 137, 138, 139syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
141140simp3d 1142 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
142 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑢𝑈)
143 suprub 11866 . . . . . . . . . . . . . 14 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
144133, 134, 141, 142, 143syl31anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
145144, 62breqtrrdi 5112 . . . . . . . . . . . 12 ((𝜑𝑢𝑈) → 𝑢𝑆)
146145ralrimiva 3107 . . . . . . . . . . 11 (𝜑 → ∀𝑢𝑈 𝑢𝑆)
14760sseli 3913 . . . . . . . . . . . . . . 15 (𝑢𝑈𝑢 ∈ (𝐴[,]𝐵))
148147adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑢 ∈ (𝐴[,]𝐵))
149132, 148sseldd 3918 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑢 ∈ ℝ)
15066adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑆 ∈ ℝ)
151149, 150lenltd 11051 . . . . . . . . . . . 12 ((𝜑𝑢𝑈) → (𝑢𝑆 ↔ ¬ 𝑆 < 𝑢))
152151ralbidva 3119 . . . . . . . . . . 11 (𝜑 → (∀𝑢𝑈 𝑢𝑆 ↔ ∀𝑢𝑈 ¬ 𝑆 < 𝑢))
153146, 152mpbid 231 . . . . . . . . . 10 (𝜑 → ∀𝑢𝑈 ¬ 𝑆 < 𝑢)
154 ralnex 3163 . . . . . . . . . 10 (∀𝑢𝑈 ¬ 𝑆 < 𝑢 ↔ ¬ ∃𝑢𝑈 𝑆 < 𝑢)
155153, 154sylib 217 . . . . . . . . 9 (𝜑 → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
156155adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵𝑆) → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
157131, 156condan 814 . . . . . . 7 (𝜑𝐵𝑆)
158 iccleub 13063 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑆 ∈ (𝐴[,]𝐵)) → 𝑆𝐵)
15976, 56, 65, 158syl3anc 1369 . . . . . . 7 (𝜑𝑆𝐵)
16056, 67, 157, 159xrletrid 12818 . . . . . 6 (𝜑𝐵 = 𝑆)
161160, 64eqeltrd 2839 . . . . 5 (𝜑𝐵𝑈)
162161, 58eleqtrdi 2849 . . . 4 (𝜑𝐵 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
163 oveq1 7262 . . . . . 6 (𝑧 = 𝐵 → (𝑧𝐴) = (𝐵𝐴))
164 breq2 5074 . . . . . . . . . . 11 (𝑧 = 𝐵 → ((𝐷𝑗) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝐵))
165 id 22 . . . . . . . . . . 11 (𝑧 = 𝐵𝑧 = 𝐵)
166164, 165ifbieq2d 4482 . . . . . . . . . 10 (𝑧 = 𝐵 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))
167166oveq2d 7271 . . . . . . . . 9 (𝑧 = 𝐵 → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))
168167fveq2d 6760 . . . . . . . 8 (𝑧 = 𝐵 → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
169168mpteq2dv 5172 . . . . . . 7 (𝑧 = 𝐵 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))
170169fveq2d 6760 . . . . . 6 (𝑧 = 𝐵 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))))
171163, 170breq12d 5083 . . . . 5 (𝑧 = 𝐵 → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
172171elrab 3617 . . . 4 (𝐵 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
173162, 172sylib 217 . . 3 (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
174173simprd 495 . 2 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))))
1753, 55, 32, 174, 49letrd 11062 1 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253  ifcif 4456   ciun 4921   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cn 11903  [,)cico 13010  [,]cicc 13011  volcvol 24532  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-sumge0 43791
This theorem is referenced by:  hoidmv1le  44022
  Copyright terms: Public domain W3C validator