Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmv1lelem3 Structured version   Visualization version   GIF version

Theorem hoidmv1lelem3 46548
Description: The dimensional volume of a 1-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is the nonempty, finite generalized sum, sub case in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmv1lelem3.a (𝜑𝐴 ∈ ℝ)
hoidmv1lelem3.b (𝜑𝐵 ∈ ℝ)
hoidmv1lelem3.l (𝜑𝐴 < 𝐵)
hoidmv1lelem3.c (𝜑𝐶:ℕ⟶ℝ)
hoidmv1lelem3.d (𝜑𝐷:ℕ⟶ℝ)
hoidmv1lelem3.x (𝜑 → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
hoidmv1lelem3.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
hoidmv1lelem3.u 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
hoidmv1lelem3.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
hoidmv1lelem3 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
Distinct variable groups:   𝐴,𝑗,𝑧   𝐵,𝑗,𝑧   𝐶,𝑗,𝑧   𝐷,𝑗,𝑧   𝑆,𝑗,𝑧   𝑈,𝑗,𝑧   𝜑,𝑗,𝑧

Proof of Theorem hoidmv1lelem3
Dummy variables 𝑦 𝑖 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoidmv1lelem3.b . . 3 (𝜑𝐵 ∈ ℝ)
2 hoidmv1lelem3.a . . 3 (𝜑𝐴 ∈ ℝ)
31, 2resubcld 11688 . 2 (𝜑 → (𝐵𝐴) ∈ ℝ)
4 nnex 12269 . . . . . . 7 ℕ ∈ V
54a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
6 icossicc 13472 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
7 0xr 11305 . . . . . . . . . 10 0 ∈ ℝ*
87a1i 11 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 0 ∈ ℝ*)
9 pnfxr 11312 . . . . . . . . . 10 +∞ ∈ ℝ*
109a1i 11 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → +∞ ∈ ℝ*)
11 hoidmv1lelem3.c . . . . . . . . . . . 12 (𝜑𝐶:ℕ⟶ℝ)
1211ffvelcdmda 7103 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ)
13 hoidmv1lelem3.d . . . . . . . . . . . . 13 (𝜑𝐷:ℕ⟶ℝ)
1413ffvelcdmda 7103 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ)
151adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝐵 ∈ ℝ)
1614, 15ifcld 4576 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ)
17 volicore 46536 . . . . . . . . . . 11 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ)
1812, 16, 17syl2anc 584 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ)
1918rexrd 11308 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ ℝ*)
2016rexrd 11308 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ*)
21 icombl 25612 . . . . . . . . . . 11 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol)
2212, 20, 21syl2anc 584 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol)
23 volge0 45916 . . . . . . . . . 10 (((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol → 0 ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 0 ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2518ltpnfd 13160 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) < +∞)
268, 10, 19, 24, 25elicod 13433 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ (0[,)+∞))
276, 26sselid 3992 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ∈ (0[,]+∞))
28 eqid 2734 . . . . . . 7 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
2927, 28fmptd 7133 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))):ℕ⟶(0[,]+∞))
305, 29sge0xrcl 46340 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ*)
319a1i 11 . . . . 5 (𝜑 → +∞ ∈ ℝ*)
32 hoidmv1lelem3.r . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
3332rexrd 11308 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ*)
34 nfv 1911 . . . . . . 7 𝑗𝜑
35 volf 25577 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
3635a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
3714rexrd 11308 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ*)
38 icombl 25612 . . . . . . . . 9 (((𝐶𝑗) ∈ ℝ ∧ (𝐷𝑗) ∈ ℝ*) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
3912, 37, 38syl2anc 584 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
4036, 39ffvelcdmd 7104 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)(𝐷𝑗))) ∈ (0[,]+∞))
4112rexrd 11308 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ*)
4212leidd 11826 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ≤ (𝐶𝑗))
43 min1 13227 . . . . . . . . . 10 (((𝐷𝑗) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))
4414, 15, 43syl2anc 584 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))
45 icossico 13453 . . . . . . . . 9 ((((𝐶𝑗) ∈ ℝ* ∧ (𝐷𝑗) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) ≤ (𝐷𝑗))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
4641, 37, 42, 44, 45syl22anc 839 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
47 volss 25581 . . . . . . . 8 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ∈ dom vol ∧ ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
4822, 39, 46, 47syl3anc 1370 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
4934, 5, 27, 40, 48sge0lempt 46365 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
5032ltpnfd 13160 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) < +∞)
5130, 33, 31, 49, 50xrlelttrd 13198 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) < +∞)
5230, 31, 51xrltned 45306 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ≠ +∞)
5352neneqd 2942 . . 3 (𝜑 → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) = +∞)
545, 29sge0repnf 46341 . . 3 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) = +∞))
5553, 54mpbird 257 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))) ∈ ℝ)
561rexrd 11308 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
572, 1iccssred 13470 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
58 hoidmv1lelem3.u . . . . . . . . . . 11 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
59 ssrab2 4089 . . . . . . . . . . 11 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ⊆ (𝐴[,]𝐵)
6058, 59eqsstri 4029 . . . . . . . . . 10 𝑈 ⊆ (𝐴[,]𝐵)
61 hoidmv1lelem3.l . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
62 hoidmv1lelem3.s . . . . . . . . . . . 12 𝑆 = sup(𝑈, ℝ, < )
632, 1, 61, 11, 13, 32, 58, 62hoidmv1lelem1 46546 . . . . . . . . . . 11 (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
6463simp1d 1141 . . . . . . . . . 10 (𝜑𝑆𝑈)
6560, 64sselid 3992 . . . . . . . . 9 (𝜑𝑆 ∈ (𝐴[,]𝐵))
6657, 65sseldd 3995 . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
6766rexrd 11308 . . . . . . 7 (𝜑𝑆 ∈ ℝ*)
68 simpl 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝜑)
69 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵𝑆) → ¬ 𝐵𝑆)
7068, 66syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝑆 ∈ ℝ)
7168, 1syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝐵 ∈ ℝ)
7270, 71ltnled 11405 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵𝑆) → (𝑆 < 𝐵 ↔ ¬ 𝐵𝑆))
7369, 72mpbird 257 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵𝑆) → 𝑆 < 𝐵)
74 hoidmv1lelem3.x . . . . . . . . . . . . 13 (𝜑 → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
7574adantr 480 . . . . . . . . . . . 12 ((𝜑𝑆 < 𝐵) → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
762rexrd 11308 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ*)
7776adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐴 ∈ ℝ*)
7856adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐵 ∈ ℝ*)
7967adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝑆 ∈ ℝ*)
8060, 57sstrid 4006 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ⊆ ℝ)
8164ne0d 4347 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ≠ ∅)
8263simp3d 1143 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
8363simp2d 1142 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝑈)
84 suprub 12226 . . . . . . . . . . . . . . . 16 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝐴𝑈) → 𝐴 ≤ sup(𝑈, ℝ, < ))
8580, 81, 82, 83, 84syl31anc 1372 . . . . . . . . . . . . . . 15 (𝜑𝐴 ≤ sup(𝑈, ℝ, < ))
8685, 62breqtrrdi 5189 . . . . . . . . . . . . . 14 (𝜑𝐴𝑆)
8786adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝐴𝑆)
88 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑆 < 𝐵) → 𝑆 < 𝐵)
8977, 78, 79, 87, 88elicod 13433 . . . . . . . . . . . 12 ((𝜑𝑆 < 𝐵) → 𝑆 ∈ (𝐴[,)𝐵))
9075, 89sseldd 3995 . . . . . . . . . . 11 ((𝜑𝑆 < 𝐵) → 𝑆 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))
91 eliun 4999 . . . . . . . . . . 11 (𝑆 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)) ↔ ∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
9290, 91sylib 218 . . . . . . . . . 10 ((𝜑𝑆 < 𝐵) → ∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
932adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐴 ∈ ℝ)
94933ad2ant1 1132 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐴 ∈ ℝ)
951adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐵 ∈ ℝ)
96953ad2ant1 1132 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐵 ∈ ℝ)
9711adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐶:ℕ⟶ℝ)
98973ad2ant1 1132 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐶:ℕ⟶ℝ)
9913adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝐷:ℕ⟶ℝ)
100993ad2ant1 1132 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐷:ℕ⟶ℝ)
101 fveq2 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
102 fveq2 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (𝐷𝑖) = (𝐷𝑗))
103101, 102oveq12d 7448 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → ((𝐶𝑖)[,)(𝐷𝑖)) = ((𝐶𝑗)[,)(𝐷𝑗)))
104103fveq2d 6910 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (vol‘((𝐶𝑖)[,)(𝐷𝑖))) = (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
105104cbvmptv 5260 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
106105fveq2i 6909 . . . . . . . . . . . . . . . 16 ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗)))))
107106, 32eqeltrid 2842 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
108107adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
1091083ad2ant1 1132 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)(𝐷𝑖))))) ∈ ℝ)
110102breq1d 5157 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 → ((𝐷𝑖) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝑧))
111110, 102ifbieq1d 4554 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗 → if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧) = if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))
112101, 111oveq12d 7448 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → ((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))
113112fveq2d 6910 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
114113cbvmptv 5260 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
115114eqcomi 2743 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))))
116115fveq2i 6909 . . . . . . . . . . . . . . . 16 ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))
117116breq2i 5155 . . . . . . . . . . . . . . 15 ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧))))))
118117rabbii 3438 . . . . . . . . . . . . . 14 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))}
11958, 118eqtri 2762 . . . . . . . . . . . . 13 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑖 ∈ ℕ ↦ (vol‘((𝐶𝑖)[,)if((𝐷𝑖) ≤ 𝑧, (𝐷𝑖), 𝑧)))))}
12064adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑆 < 𝐵) → 𝑆𝑈)
1211203ad2ant1 1132 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆𝑈)
122873ad2ant1 1132 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝐴𝑆)
123883ad2ant1 1132 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆 < 𝐵)
124 simp2 1136 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑗 ∈ ℕ)
125 simp3 1137 . . . . . . . . . . . . 13 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)))
126 eqid 2734 . . . . . . . . . . . . 13 if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵) = if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)
12794, 96, 98, 100, 109, 119, 121, 122, 123, 124, 125, 126hoidmv1lelem2 46547 . . . . . . . . . . . 12 (((𝜑𝑆 < 𝐵) ∧ 𝑗 ∈ ℕ ∧ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗))) → ∃𝑢𝑈 𝑆 < 𝑢)
1281273exp 1118 . . . . . . . . . . 11 ((𝜑𝑆 < 𝐵) → (𝑗 ∈ ℕ → (𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)) → ∃𝑢𝑈 𝑆 < 𝑢)))
129128rexlimdv 3150 . . . . . . . . . 10 ((𝜑𝑆 < 𝐵) → (∃𝑗 ∈ ℕ 𝑆 ∈ ((𝐶𝑗)[,)(𝐷𝑗)) → ∃𝑢𝑈 𝑆 < 𝑢))
13092, 129mpd 15 . . . . . . . . 9 ((𝜑𝑆 < 𝐵) → ∃𝑢𝑈 𝑆 < 𝑢)
13168, 73, 130syl2anc 584 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵𝑆) → ∃𝑢𝑈 𝑆 < 𝑢)
13257adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → (𝐴[,]𝐵) ⊆ ℝ)
13360, 132sstrid 4006 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑈 ⊆ ℝ)
13481adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑈 ≠ ∅)
1352, 1jca 511 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
136135adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
13760a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑈 ⊆ (𝐴[,]𝐵))
13864adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑆𝑈)
139 iccsupr 13478 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑈 ⊆ (𝐴[,]𝐵) ∧ 𝑆𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
140136, 137, 138, 139syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
141140simp3d 1143 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
142 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑢𝑈)
143 suprub 12226 . . . . . . . . . . . . . 14 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
144133, 134, 141, 142, 143syl31anc 1372 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
145144, 62breqtrrdi 5189 . . . . . . . . . . . 12 ((𝜑𝑢𝑈) → 𝑢𝑆)
146145ralrimiva 3143 . . . . . . . . . . 11 (𝜑 → ∀𝑢𝑈 𝑢𝑆)
14760sseli 3990 . . . . . . . . . . . . . . 15 (𝑢𝑈𝑢 ∈ (𝐴[,]𝐵))
148147adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑢 ∈ (𝐴[,]𝐵))
149132, 148sseldd 3995 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑢 ∈ ℝ)
15066adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑆 ∈ ℝ)
151149, 150lenltd 11404 . . . . . . . . . . . 12 ((𝜑𝑢𝑈) → (𝑢𝑆 ↔ ¬ 𝑆 < 𝑢))
152151ralbidva 3173 . . . . . . . . . . 11 (𝜑 → (∀𝑢𝑈 𝑢𝑆 ↔ ∀𝑢𝑈 ¬ 𝑆 < 𝑢))
153146, 152mpbid 232 . . . . . . . . . 10 (𝜑 → ∀𝑢𝑈 ¬ 𝑆 < 𝑢)
154 ralnex 3069 . . . . . . . . . 10 (∀𝑢𝑈 ¬ 𝑆 < 𝑢 ↔ ¬ ∃𝑢𝑈 𝑆 < 𝑢)
155153, 154sylib 218 . . . . . . . . 9 (𝜑 → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
156155adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵𝑆) → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
157131, 156condan 818 . . . . . . 7 (𝜑𝐵𝑆)
158 iccleub 13438 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑆 ∈ (𝐴[,]𝐵)) → 𝑆𝐵)
15976, 56, 65, 158syl3anc 1370 . . . . . . 7 (𝜑𝑆𝐵)
16056, 67, 157, 159xrletrid 13193 . . . . . 6 (𝜑𝐵 = 𝑆)
161160, 64eqeltrd 2838 . . . . 5 (𝜑𝐵𝑈)
162161, 58eleqtrdi 2848 . . . 4 (𝜑𝐵 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
163 oveq1 7437 . . . . . 6 (𝑧 = 𝐵 → (𝑧𝐴) = (𝐵𝐴))
164 breq2 5151 . . . . . . . . . . 11 (𝑧 = 𝐵 → ((𝐷𝑗) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝐵))
165 id 22 . . . . . . . . . . 11 (𝑧 = 𝐵𝑧 = 𝐵)
166164, 165ifbieq2d 4556 . . . . . . . . . 10 (𝑧 = 𝐵 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))
167166oveq2d 7446 . . . . . . . . 9 (𝑧 = 𝐵 → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))
168167fveq2d 6910 . . . . . . . 8 (𝑧 = 𝐵 → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))
169168mpteq2dv 5249 . . . . . . 7 (𝑧 = 𝐵 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))
170169fveq2d 6910 . . . . . 6 (𝑧 = 𝐵 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))))
171163, 170breq12d 5160 . . . . 5 (𝑧 = 𝐵 → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
172171elrab 3694 . . . 4 (𝐵 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
173162, 172sylib 218 . . 3 (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ∧ (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵)))))))
174173simprd 495 . 2 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐵, (𝐷𝑗), 𝐵))))))
1753, 55, 32, 174, 49letrd 11415 1 (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  wss 3962  c0 4338  ifcif 4530   ciun 4995   class class class wbr 5147  cmpt 5230  dom cdm 5688  wf 6558  cfv 6562  (class class class)co 7430  supcsup 9477  cr 11151  0cc0 11152  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  cmin 11489  cn 12263  [,)cico 13385  [,]cicc 13386  volcvol 25511  Σ^csumge0 46317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-rest 17468  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-bases 22968  df-cmp 23410  df-ovol 25512  df-vol 25513  df-sumge0 46318
This theorem is referenced by:  hoidmv1le  46549
  Copyright terms: Public domain W3C validator