Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmv1lelem1 Structured version   Visualization version   GIF version

Theorem hoidmv1lelem1 46589
Description: The supremum of 𝑈 belongs to 𝑈. This is the last part of step (a) and the whole step (b) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmv1lelem1.a (𝜑𝐴 ∈ ℝ)
hoidmv1lelem1.b (𝜑𝐵 ∈ ℝ)
hoidmv1lelem1.l (𝜑𝐴 < 𝐵)
hoidmv1lelem1.c (𝜑𝐶:ℕ⟶ℝ)
hoidmv1lelem1.d (𝜑𝐷:ℕ⟶ℝ)
hoidmv1lelem1.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
hoidmv1lelem1.u 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
hoidmv1lelem1.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
hoidmv1lelem1 (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
Distinct variable groups:   𝐴,𝑗,𝑧   𝑦,𝐴   𝑥,𝐵,𝑦   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑆,𝑗,𝑧   𝑈,𝑗,𝑧   𝑥,𝑈,𝑦   𝜑,𝑗,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑗)   𝐶(𝑥,𝑦,𝑗)   𝐷(𝑥,𝑦,𝑗)   𝑆(𝑥,𝑦)

Proof of Theorem hoidmv1lelem1
StepHypRef Expression
1 hoidmv1lelem1.s . . . . . 6 𝑆 = sup(𝑈, ℝ, < )
2 hoidmv1lelem1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3 hoidmv1lelem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
4 hoidmv1lelem1.u . . . . . . . . 9 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
5 ssrab2 4043 . . . . . . . . 9 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ⊆ (𝐴[,]𝐵)
64, 5eqsstri 3993 . . . . . . . 8 𝑈 ⊆ (𝐴[,]𝐵)
76a1i 11 . . . . . . 7 (𝜑𝑈 ⊆ (𝐴[,]𝐵))
82rexrd 11224 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
93rexrd 11224 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
10 hoidmv1lelem1.l . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
112, 3, 10ltled 11322 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
12 lbicc2 13425 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
138, 9, 11, 12syl3anc 1373 . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐴[,]𝐵))
142recnd 11202 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
1514subidd 11521 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐴) = 0)
16 nfv 1914 . . . . . . . . . . . . 13 𝑗𝜑
17 nnex 12192 . . . . . . . . . . . . . 14 ℕ ∈ V
1817a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ ∈ V)
19 volf 25430 . . . . . . . . . . . . . . 15 vol:dom vol⟶(0[,]+∞)
2019a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
21 hoidmv1lelem1.c . . . . . . . . . . . . . . . 16 (𝜑𝐶:ℕ⟶ℝ)
2221ffvelcdmda 7056 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ)
23 hoidmv1lelem1.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐷:ℕ⟶ℝ)
2423ffvelcdmda 7056 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ)
252adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ ℝ)
2624, 25ifcld 4535 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴) ∈ ℝ)
2726rexrd 11224 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴) ∈ ℝ*)
28 icombl 25465 . . . . . . . . . . . . . . 15 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)) ∈ dom vol)
2922, 27, 28syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)) ∈ dom vol)
3020, 29ffvelcdmd 7057 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))) ∈ (0[,]+∞))
3116, 18, 30sge0ge0mpt 46436 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))))
3215, 31eqbrtrd 5129 . . . . . . . . . . 11 (𝜑 → (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))))
3313, 32jca 511 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))))
34 oveq1 7394 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (𝑧𝐴) = (𝐴𝐴))
35 breq2 5111 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝐴 → ((𝐷𝑗) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝐴))
36 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝐴𝑧 = 𝐴)
3735, 36ifbieq2d 4515 . . . . . . . . . . . . . . . 16 (𝑧 = 𝐴 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))
3837oveq2d 7403 . . . . . . . . . . . . . . 15 (𝑧 = 𝐴 → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))
3938fveq2d 6862 . . . . . . . . . . . . . 14 (𝑧 = 𝐴 → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))
4039mpteq2dv 5201 . . . . . . . . . . . . 13 (𝑧 = 𝐴 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))
4140fveq2d 6862 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))))
4234, 41breq12d 5120 . . . . . . . . . . 11 (𝑧 = 𝐴 → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))))
4342elrab 3659 . . . . . . . . . 10 (𝐴 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))))
4433, 43sylibr 234 . . . . . . . . 9 (𝜑𝐴 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
4544, 4eleqtrrdi 2839 . . . . . . . 8 (𝜑𝐴𝑈)
4645ne0d 4305 . . . . . . 7 (𝜑𝑈 ≠ ∅)
472, 3, 7, 46supicc 13462 . . . . . 6 (𝜑 → sup(𝑈, ℝ, < ) ∈ (𝐴[,]𝐵))
481, 47eqeltrid 2832 . . . . 5 (𝜑𝑆 ∈ (𝐴[,]𝐵))
491a1i 11 . . . . . . 7 (𝜑𝑆 = sup(𝑈, ℝ, < ))
50 nfv 1914 . . . . . . . . 9 𝑧𝜑
512, 3iccssred 13395 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
527, 51sstrd 3957 . . . . . . . . . . . 12 (𝜑𝑈 ⊆ ℝ)
5352sselda 3946 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → 𝑧 ∈ ℝ)
54 nfv 1914 . . . . . . . . . . . . . . . 16 𝑗(𝜑𝑧𝑈)
5517a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → ℕ ∈ V)
5619a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
5722adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ)
5824adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ)
5953adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → 𝑧 ∈ ℝ)
6058, 59ifcld 4535 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ)
6160rexrd 11224 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ*)
62 icombl 25465 . . . . . . . . . . . . . . . . . 18 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol)
6357, 61, 62syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol)
6456, 63ffvelcdmd 7057 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ∈ (0[,]+∞))
6554, 55, 64sge0xrclmpt 46426 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ∈ ℝ*)
66 pnfxr 11228 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
6766a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑈) → +∞ ∈ ℝ*)
68 hoidmv1lelem1.r . . . . . . . . . . . . . . . . . 18 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
6968rexrd 11224 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ*)
7069adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ*)
7124rexrd 11224 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ*)
72 icombl 25465 . . . . . . . . . . . . . . . . . . . 20 (((𝐶𝑗) ∈ ℝ ∧ (𝐷𝑗) ∈ ℝ*) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
7322, 71, 72syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
7420, 73ffvelcdmd 7057 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)(𝐷𝑗))) ∈ (0[,]+∞))
7574adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)(𝐷𝑗))) ∈ (0[,]+∞))
7673adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
7722rexrd 11224 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ*)
7877adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ*)
7971adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ*)
8022leidd 11744 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ≤ (𝐶𝑗))
8180adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗) ≤ (𝐶𝑗))
82 min1 13149 . . . . . . . . . . . . . . . . . . . 20 (((𝐷𝑗) ∈ ℝ ∧ 𝑧 ∈ ℝ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ (𝐷𝑗))
8358, 59, 82syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ (𝐷𝑗))
84 icossico 13377 . . . . . . . . . . . . . . . . . . 19 ((((𝐶𝑗) ∈ ℝ* ∧ (𝐷𝑗) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ (𝐷𝑗))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
8578, 79, 81, 83, 84syl22anc 838 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
86 volss 25434 . . . . . . . . . . . . . . . . . 18 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol ∧ ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
8763, 76, 85, 86syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
8854, 55, 64, 75, 87sge0lempt 46408 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
8968ltpnfd 13081 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) < +∞)
9089adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) < +∞)
9165, 70, 67, 88, 90xrlelttrd 13120 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) < +∞)
9265, 67, 91xrltned 45353 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ≠ +∞)
9392neneqd 2930 . . . . . . . . . . . . 13 ((𝜑𝑧𝑈) → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = +∞)
94 eqid 2729 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
9564, 94fmptd 7086 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑈) → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))):ℕ⟶(0[,]+∞))
9655, 95sge0repnf 46384 . . . . . . . . . . . . 13 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = +∞))
9793, 96mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ∈ ℝ)
982adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → 𝐴 ∈ ℝ)
9997, 98readdcld 11203 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴) ∈ ℝ)
10051, 48sseldd 3947 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑆 ∈ ℝ)
101100adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → 𝑆 ∈ ℝ)
10224, 101ifcld 4535 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ)
103102rexrd 11224 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*)
104 icombl 25465 . . . . . . . . . . . . . . . . . . 19 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol)
10522, 103, 104syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol)
10620, 105ffvelcdmd 7057 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ∈ (0[,]+∞))
10716, 18, 106sge0xrclmpt 46426 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ*)
10866a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → +∞ ∈ ℝ*)
109 min1 13149 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷𝑗) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ≤ (𝐷𝑗))
11024, 101, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ≤ (𝐷𝑗))
111 icossico 13377 . . . . . . . . . . . . . . . . . . . 20 ((((𝐶𝑗) ∈ ℝ* ∧ (𝐷𝑗) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ≤ (𝐷𝑗))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
11277, 71, 80, 110, 111syl22anc 838 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
113 volss 25434 . . . . . . . . . . . . . . . . . . 19 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol ∧ ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
114105, 73, 112, 113syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
11516, 18, 106, 74, 114sge0lempt 46408 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
116107, 69, 108, 115, 89xrlelttrd 13120 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) < +∞)
117107, 108, 116xrltned 45353 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ≠ +∞)
118117neneqd 2930 . . . . . . . . . . . . . 14 (𝜑 → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) = +∞)
119 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
120106, 119fmptd 7086 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))):ℕ⟶(0[,]+∞))
12118, 120sge0repnf 46384 . . . . . . . . . . . . . 14 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) = +∞))
122118, 121mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ)
123122, 2readdcld 11203 . . . . . . . . . . . 12 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ∈ ℝ)
124123adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ∈ ℝ)
1254eleq2i 2820 . . . . . . . . . . . . . . . 16 (𝑧𝑈𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
126125biimpi 216 . . . . . . . . . . . . . . 15 (𝑧𝑈𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
127126adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑈) → 𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
128 rabid 3427 . . . . . . . . . . . . . 14 (𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))))
129127, 128sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑧𝑈) → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))))
130129simprd 495 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))))
13153, 98, 97lesubaddd 11775 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴)))
132130, 131mpbid 232 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴))
133122adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ)
134106adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ∈ (0[,]+∞))
135105adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol)
136103adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*)
13760adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ)
138 eqidd 2730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) = (𝐷𝑗))
139 iftrue 4494 . . . . . . . . . . . . . . . . . . 19 ((𝐷𝑗) ≤ 𝑧 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = (𝐷𝑗))
140139adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = (𝐷𝑗))
14158adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ∈ ℝ)
14259adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → 𝑧 ∈ ℝ)
143100ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → 𝑆 ∈ ℝ)
144 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ≤ 𝑧)
14552adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → 𝑈 ⊆ ℝ)
14646adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → 𝑈 ≠ ∅)
1472, 3jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
148 iccsupr 13403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑈 ⊆ (𝐴[,]𝐵) ∧ 𝐴𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
149147, 7, 45, 148syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
150149simp3d 1144 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
151150adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
152127, 125sylibr 234 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → 𝑧𝑈)
153 suprub 12144 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝑧𝑈) → 𝑧 ≤ sup(𝑈, ℝ, < ))
154145, 146, 151, 152, 153syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧𝑈) → 𝑧 ≤ sup(𝑈, ℝ, < ))
155154, 1breqtrrdi 5149 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑈) → 𝑧𝑆)
156155ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → 𝑧𝑆)
157141, 142, 143, 144, 156letrd 11331 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ≤ 𝑆)
158157iftrued 4496 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = (𝐷𝑗))
159138, 140, 1583eqtr4d 2774 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
160137, 159eqled 11277 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
16159adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → 𝑧 ∈ ℝ)
16258adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ∈ ℝ)
163 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → ¬ (𝐷𝑗) ≤ 𝑧)
164161, 162ltnled 11321 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → (𝑧 < (𝐷𝑗) ↔ ¬ (𝐷𝑗) ≤ 𝑧))
165163, 164mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → 𝑧 < (𝐷𝑗))
166161, 162, 165ltled 11322 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → 𝑧 ≤ (𝐷𝑗))
167166adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → 𝑧 ≤ (𝐷𝑗))
168 iffalse 4497 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝐷𝑗) ≤ 𝑧 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = 𝑧)
169168ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = 𝑧)
170 iftrue 4494 . . . . . . . . . . . . . . . . . . . 20 ((𝐷𝑗) ≤ 𝑆 → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = (𝐷𝑗))
171170adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = (𝐷𝑗))
172169, 171breq12d 5120 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → (if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ↔ 𝑧 ≤ (𝐷𝑗)))
173167, 172mpbird 257 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
174155ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → 𝑧𝑆)
175168ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = 𝑧)
176 iffalse 4497 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝐷𝑗) ≤ 𝑆 → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = 𝑆)
177176adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = 𝑆)
178175, 177breq12d 5120 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → (if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ↔ 𝑧𝑆))
179174, 178mpbird 257 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
180173, 179pm2.61dan 812 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
181160, 180pm2.61dan 812 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
182 icossico 13377 . . . . . . . . . . . . . . 15 ((((𝐶𝑗) ∈ ℝ* ∧ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))
18378, 136, 81, 181, 182syl22anc 838 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))
184 volss 25434 . . . . . . . . . . . . . 14 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
18563, 135, 183, 184syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
18654, 55, 64, 134, 185sge0lempt 46408 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))))
18797, 133, 98, 186leadd1dd 11792 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
18853, 99, 124, 132, 187letrd 11331 . . . . . . . . . 10 ((𝜑𝑧𝑈) → 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
189188ex 412 . . . . . . . . 9 (𝜑 → (𝑧𝑈𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
19050, 189ralrimi 3235 . . . . . . . 8 (𝜑 → ∀𝑧𝑈 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
191 suprleub 12149 . . . . . . . . 9 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ∈ ℝ) → (sup(𝑈, ℝ, < ) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ↔ ∀𝑧𝑈 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
19252, 46, 150, 123, 191syl31anc 1375 . . . . . . . 8 (𝜑 → (sup(𝑈, ℝ, < ) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ↔ ∀𝑧𝑈 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
193190, 192mpbird 257 . . . . . . 7 (𝜑 → sup(𝑈, ℝ, < ) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
19449, 193eqbrtrd 5129 . . . . . 6 (𝜑𝑆 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
195100, 2, 122lesubaddd 11775 . . . . . 6 (𝜑 → ((𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ↔ 𝑆 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
196194, 195mpbird 257 . . . . 5 (𝜑 → (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))))
19748, 196jca 511 . . . 4 (𝜑 → (𝑆 ∈ (𝐴[,]𝐵) ∧ (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))))
198 oveq1 7394 . . . . . 6 (𝑧 = 𝑆 → (𝑧𝐴) = (𝑆𝐴))
199 breq2 5111 . . . . . . . . . . 11 (𝑧 = 𝑆 → ((𝐷𝑗) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝑆))
200 id 22 . . . . . . . . . . 11 (𝑧 = 𝑆𝑧 = 𝑆)
201199, 200ifbieq2d 4515 . . . . . . . . . 10 (𝑧 = 𝑆 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
202201oveq2d 7403 . . . . . . . . 9 (𝑧 = 𝑆 → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))
203202fveq2d 6862 . . . . . . . 8 (𝑧 = 𝑆 → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
204203mpteq2dv 5201 . . . . . . 7 (𝑧 = 𝑆 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))
205204fveq2d 6862 . . . . . 6 (𝑧 = 𝑆 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))))
206198, 205breq12d 5120 . . . . 5 (𝑧 = 𝑆 → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))))
207206elrab 3659 . . . 4 (𝑆 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝑆 ∈ (𝐴[,]𝐵) ∧ (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))))
208197, 207sylibr 234 . . 3 (𝜑𝑆 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
209208, 4eleqtrrdi 2839 . 2 (𝜑𝑆𝑈)
210209, 45, 1503jca 1128 1 (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  c0 4296  ifcif 4488   class class class wbr 5107  cmpt 5188  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  supcsup 9391  cr 11067  0cc0 11068   + caddc 11071  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cmin 11405  cn 12186  [,)cico 13308  [,]cicc 13309  volcvol 25364  Σ^csumge0 46360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xadd 13073  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-xmet 21257  df-met 21258  df-ovol 25365  df-vol 25366  df-sumge0 46361
This theorem is referenced by:  hoidmv1lelem3  46591
  Copyright terms: Public domain W3C validator