Proof of Theorem hoidmv1lelem1
Step | Hyp | Ref
| Expression |
1 | | hoidmv1lelem1.s |
. . . . . 6
⊢ 𝑆 = sup(𝑈, ℝ, < ) |
2 | | hoidmv1lelem1.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | | hoidmv1lelem1.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | | hoidmv1lelem1.u |
. . . . . . . . 9
⊢ 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))} |
5 | | ssrab2 4009 |
. . . . . . . . 9
⊢ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))} ⊆ (𝐴[,]𝐵) |
6 | 4, 5 | eqsstri 3951 |
. . . . . . . 8
⊢ 𝑈 ⊆ (𝐴[,]𝐵) |
7 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) |
8 | 2 | rexrd 10956 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
9 | 3 | rexrd 10956 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
10 | | hoidmv1lelem1.l |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 < 𝐵) |
11 | 2, 3, 10 | ltled 11053 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
12 | | lbicc2 13125 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
13 | 8, 9, 11, 12 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
14 | 2 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ ℂ) |
15 | 14 | subidd 11250 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 − 𝐴) = 0) |
16 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝜑 |
17 | | nnex 11909 |
. . . . . . . . . . . . . 14
⊢ ℕ
∈ V |
18 | 17 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℕ ∈
V) |
19 | | volf 24598 |
. . . . . . . . . . . . . . 15
⊢ vol:dom
vol⟶(0[,]+∞) |
20 | 19 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → vol:dom
vol⟶(0[,]+∞)) |
21 | | hoidmv1lelem1.c |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐶:ℕ⟶ℝ) |
22 | 21 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ ℝ) |
23 | | hoidmv1lelem1.d |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐷:ℕ⟶ℝ) |
24 | 23 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ ℝ) |
25 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ ℝ) |
26 | 24, 25 | ifcld 4502 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴) ∈ ℝ) |
27 | 26 | rexrd 10956 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴) ∈
ℝ*) |
28 | | icombl 24633 |
. . . . . . . . . . . . . . 15
⊢ (((𝐶‘𝑗) ∈ ℝ ∧ if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴) ∈ ℝ*) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴)) ∈ dom vol) |
29 | 22, 27, 28 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴)) ∈ dom vol) |
30 | 20, 29 | ffvelrnd 6944 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴))) ∈ (0[,]+∞)) |
31 | 16, 18, 30 | sge0ge0mpt 43866 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴)))))) |
32 | 15, 31 | eqbrtrd 5092 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴)))))) |
33 | 13, 32 | jca 511 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐴 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴))))))) |
34 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐴 → (𝑧 − 𝐴) = (𝐴 − 𝐴)) |
35 | | breq2 5074 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝐴 → ((𝐷‘𝑗) ≤ 𝑧 ↔ (𝐷‘𝑗) ≤ 𝐴)) |
36 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝐴 → 𝑧 = 𝐴) |
37 | 35, 36 | ifbieq2d 4482 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝐴 → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) = if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴)) |
38 | 37 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝐴 → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) = ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴))) |
39 | 38 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝐴 → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))) = (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴)))) |
40 | 39 | mpteq2dv 5172 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝐴 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴))))) |
41 | 40 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐴 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴)))))) |
42 | 34, 41 | breq12d 5083 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐴 → ((𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) ↔ (𝐴 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴))))))) |
43 | 42 | elrab 3617 |
. . . . . . . . . 10
⊢ (𝐴 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))} ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐴 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝐴, (𝐷‘𝑗), 𝐴))))))) |
44 | 33, 43 | sylibr 233 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))}) |
45 | 44, 4 | eleqtrrdi 2850 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
46 | 45 | ne0d 4266 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ≠ ∅) |
47 | 2, 3, 7, 46 | supicc 13162 |
. . . . . 6
⊢ (𝜑 → sup(𝑈, ℝ, < ) ∈ (𝐴[,]𝐵)) |
48 | 1, 47 | eqeltrid 2843 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ (𝐴[,]𝐵)) |
49 | 1 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝑆 = sup(𝑈, ℝ, < )) |
50 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑧𝜑 |
51 | 2, 3 | iccssred 13095 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
52 | 7, 51 | sstrd 3927 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ⊆ ℝ) |
53 | 52 | sselda 3917 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → 𝑧 ∈ ℝ) |
54 | | nfv 1918 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗(𝜑 ∧ 𝑧 ∈ 𝑈) |
55 | 17 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → ℕ ∈ V) |
56 | 19 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → vol:dom
vol⟶(0[,]+∞)) |
57 | 22 | adantlr 711 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ ℝ) |
58 | 24 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ ℝ) |
59 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑧 ∈ ℝ) |
60 | 58, 59 | ifcld 4502 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ∈ ℝ) |
61 | 60 | rexrd 10956 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ∈
ℝ*) |
62 | | icombl 24633 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐶‘𝑗) ∈ ℝ ∧ if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ∈ ℝ*) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) ∈ dom vol) |
63 | 57, 61, 62 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) ∈ dom vol) |
64 | 56, 63 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))) ∈ (0[,]+∞)) |
65 | 54, 55, 64 | sge0xrclmpt 43856 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) ∈
ℝ*) |
66 | | pnfxr 10960 |
. . . . . . . . . . . . . . . 16
⊢ +∞
∈ ℝ* |
67 | 66 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → +∞ ∈
ℝ*) |
68 | | hoidmv1lelem1.r |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))))) ∈ ℝ) |
69 | 68 | rexrd 10956 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))))) ∈
ℝ*) |
70 | 69 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))))) ∈
ℝ*) |
71 | 24 | rexrd 10956 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈
ℝ*) |
72 | | icombl 24633 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐶‘𝑗) ∈ ℝ ∧ (𝐷‘𝑗) ∈ ℝ*) → ((𝐶‘𝑗)[,)(𝐷‘𝑗)) ∈ dom vol) |
73 | 22, 71, 72 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)(𝐷‘𝑗)) ∈ dom vol) |
74 | 20, 73 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))) ∈ (0[,]+∞)) |
75 | 74 | adantlr 711 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))) ∈ (0[,]+∞)) |
76 | 73 | adantlr 711 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)(𝐷‘𝑗)) ∈ dom vol) |
77 | 22 | rexrd 10956 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈
ℝ*) |
78 | 77 | adantlr 711 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈
ℝ*) |
79 | 71 | adantlr 711 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈
ℝ*) |
80 | 22 | leidd 11471 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ≤ (𝐶‘𝑗)) |
81 | 80 | adantlr 711 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ≤ (𝐶‘𝑗)) |
82 | | min1 12852 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐷‘𝑗) ∈ ℝ ∧ 𝑧 ∈ ℝ) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ≤ (𝐷‘𝑗)) |
83 | 58, 59, 82 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ≤ (𝐷‘𝑗)) |
84 | | icossico 13078 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐶‘𝑗) ∈ ℝ* ∧ (𝐷‘𝑗) ∈ ℝ*) ∧ ((𝐶‘𝑗) ≤ (𝐶‘𝑗) ∧ if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ≤ (𝐷‘𝑗))) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) ⊆ ((𝐶‘𝑗)[,)(𝐷‘𝑗))) |
85 | 78, 79, 81, 83, 84 | syl22anc 835 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) ⊆ ((𝐶‘𝑗)[,)(𝐷‘𝑗))) |
86 | | volss 24602 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) ∈ dom vol ∧ ((𝐶‘𝑗)[,)(𝐷‘𝑗)) ∈ dom vol ∧ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) ⊆ ((𝐶‘𝑗)[,)(𝐷‘𝑗))) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))) ≤ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗)))) |
87 | 63, 76, 85, 86 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))) ≤ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗)))) |
88 | 54, 55, 64, 75, 87 | sge0lempt 43838 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗)))))) |
89 | 68 | ltpnfd 12786 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))))) < +∞) |
90 | 89 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))))) < +∞) |
91 | 65, 70, 67, 88, 90 | xrlelttrd 12823 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) < +∞) |
92 | 65, 67, 91 | xrltned 42786 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) ≠ +∞) |
93 | 92 | neneqd 2947 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) = +∞) |
94 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ ↦
(vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))) |
95 | 64, 94 | fmptd 6970 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))):ℕ⟶(0[,]+∞)) |
96 | 55, 95 | sge0repnf 43814 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) →
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) ∈ ℝ ↔ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) = +∞)) |
97 | 93, 96 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) ∈ ℝ) |
98 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → 𝐴 ∈ ℝ) |
99 | 97, 98 | readdcld 10935 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) →
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) + 𝐴) ∈ ℝ) |
100 | 51, 48 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑆 ∈ ℝ) |
101 | 100 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑆 ∈ ℝ) |
102 | 24, 101 | ifcld 4502 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ∈ ℝ) |
103 | 102 | rexrd 10956 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ∈
ℝ*) |
104 | | icombl 24633 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐶‘𝑗) ∈ ℝ ∧ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ∈ ℝ*) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ∈ dom vol) |
105 | 22, 103, 104 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ∈ dom vol) |
106 | 20, 105 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) ∈ (0[,]+∞)) |
107 | 16, 18, 106 | sge0xrclmpt 43856 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ∈
ℝ*) |
108 | 66 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → +∞ ∈
ℝ*) |
109 | | min1 12852 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐷‘𝑗) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ≤ (𝐷‘𝑗)) |
110 | 24, 101, 109 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ≤ (𝐷‘𝑗)) |
111 | | icossico 13078 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐶‘𝑗) ∈ ℝ* ∧ (𝐷‘𝑗) ∈ ℝ*) ∧ ((𝐶‘𝑗) ≤ (𝐶‘𝑗) ∧ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ≤ (𝐷‘𝑗))) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ⊆ ((𝐶‘𝑗)[,)(𝐷‘𝑗))) |
112 | 77, 71, 80, 110, 111 | syl22anc 835 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ⊆ ((𝐶‘𝑗)[,)(𝐷‘𝑗))) |
113 | | volss 24602 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ∈ dom vol ∧ ((𝐶‘𝑗)[,)(𝐷‘𝑗)) ∈ dom vol ∧ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ⊆ ((𝐶‘𝑗)[,)(𝐷‘𝑗))) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) ≤ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗)))) |
114 | 105, 73, 112, 113 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) ≤ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗)))) |
115 | 16, 18, 106, 74, 114 | sge0lempt 43838 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗)))))) |
116 | 107, 69, 108, 115, 89 | xrlelttrd 12823 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) < +∞) |
117 | 107, 108,
116 | xrltned 42786 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ≠ +∞) |
118 | 117 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) = +∞) |
119 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ ↦
(vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))) |
120 | 106, 119 | fmptd 6970 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))):ℕ⟶(0[,]+∞)) |
121 | 18, 120 | sge0repnf 43814 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ∈ ℝ ↔ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) = +∞)) |
122 | 118, 121 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ∈ ℝ) |
123 | 122, 2 | readdcld 10935 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴) ∈ ℝ) |
124 | 123 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) →
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴) ∈ ℝ) |
125 | 4 | eleq2i 2830 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑈 ↔ 𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))}) |
126 | 125 | biimpi 215 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑈 → 𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))}) |
127 | 126 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → 𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))}) |
128 | | rabid 3304 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))} ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))))) |
129 | 127, 128 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))))) |
130 | 129 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))) |
131 | 53, 98, 97 | lesubaddd 11502 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → ((𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) ↔ 𝑧 ≤
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) + 𝐴))) |
132 | 130, 131 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → 𝑧 ≤
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) + 𝐴)) |
133 | 122 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ∈ ℝ) |
134 | 106 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) ∈ (0[,]+∞)) |
135 | 105 | adantlr 711 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ∈ dom vol) |
136 | 103 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ∈
ℝ*) |
137 | 60 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑧) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ∈ ℝ) |
138 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑧) → (𝐷‘𝑗) = (𝐷‘𝑗)) |
139 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷‘𝑗) ≤ 𝑧 → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) = (𝐷‘𝑗)) |
140 | 139 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑧) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) = (𝐷‘𝑗)) |
141 | 58 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑧) → (𝐷‘𝑗) ∈ ℝ) |
142 | 59 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑧) → 𝑧 ∈ ℝ) |
143 | 100 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑧) → 𝑆 ∈ ℝ) |
144 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑧) → (𝐷‘𝑗) ≤ 𝑧) |
145 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → 𝑈 ⊆ ℝ) |
146 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → 𝑈 ≠ ∅) |
147 | 2, 3 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
148 | | iccsupr 13103 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑈 ⊆ (𝐴[,]𝐵) ∧ 𝐴 ∈ 𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑈 𝑦 ≤ 𝑥)) |
149 | 147, 7, 45, 148 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑈 𝑦 ≤ 𝑥)) |
150 | 149 | simp3d 1142 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑈 𝑦 ≤ 𝑥) |
151 | 150 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑈 𝑦 ≤ 𝑥) |
152 | 127, 125 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → 𝑧 ∈ 𝑈) |
153 | | suprub 11866 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑈 𝑦 ≤ 𝑥) ∧ 𝑧 ∈ 𝑈) → 𝑧 ≤ sup(𝑈, ℝ, < )) |
154 | 145, 146,
151, 152, 153 | syl31anc 1371 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → 𝑧 ≤ sup(𝑈, ℝ, < )) |
155 | 154, 1 | breqtrrdi 5112 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → 𝑧 ≤ 𝑆) |
156 | 155 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑧) → 𝑧 ≤ 𝑆) |
157 | 141, 142,
143, 144, 156 | letrd 11062 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑧) → (𝐷‘𝑗) ≤ 𝑆) |
158 | 157 | iftrued 4464 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑧) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) = (𝐷‘𝑗)) |
159 | 138, 140,
158 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑧) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) = if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) |
160 | 137, 159 | eqled 11008 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑧) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ≤ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) |
161 | 59 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) → 𝑧 ∈ ℝ) |
162 | 58 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) → (𝐷‘𝑗) ∈ ℝ) |
163 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) → ¬ (𝐷‘𝑗) ≤ 𝑧) |
164 | 161, 162 | ltnled 11052 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) → (𝑧 < (𝐷‘𝑗) ↔ ¬ (𝐷‘𝑗) ≤ 𝑧)) |
165 | 163, 164 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) → 𝑧 < (𝐷‘𝑗)) |
166 | 161, 162,
165 | ltled 11053 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) → 𝑧 ≤ (𝐷‘𝑗)) |
167 | 166 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) ∧ (𝐷‘𝑗) ≤ 𝑆) → 𝑧 ≤ (𝐷‘𝑗)) |
168 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
(𝐷‘𝑗) ≤ 𝑧 → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) = 𝑧) |
169 | 168 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) ∧ (𝐷‘𝑗) ≤ 𝑆) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) = 𝑧) |
170 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷‘𝑗) ≤ 𝑆 → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) = (𝐷‘𝑗)) |
171 | 170 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) ∧ (𝐷‘𝑗) ≤ 𝑆) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) = (𝐷‘𝑗)) |
172 | 169, 171 | breq12d 5083 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) ∧ (𝐷‘𝑗) ≤ 𝑆) → (if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ≤ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ↔ 𝑧 ≤ (𝐷‘𝑗))) |
173 | 167, 172 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) ∧ (𝐷‘𝑗) ≤ 𝑆) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ≤ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) |
174 | 155 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → 𝑧 ≤ 𝑆) |
175 | 168 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) = 𝑧) |
176 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
(𝐷‘𝑗) ≤ 𝑆 → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) = 𝑆) |
177 | 176 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) = 𝑆) |
178 | 175, 177 | breq12d 5083 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → (if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ≤ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ↔ 𝑧 ≤ 𝑆)) |
179 | 174, 178 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ≤ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) |
180 | 173, 179 | pm2.61dan 809 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑧) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ≤ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) |
181 | 160, 180 | pm2.61dan 809 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ≤ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) |
182 | | icossico 13078 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐶‘𝑗) ∈ ℝ* ∧ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ∈ ℝ*) ∧ ((𝐶‘𝑗) ≤ (𝐶‘𝑗) ∧ if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) ≤ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) ⊆ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) |
183 | 78, 136, 81, 181, 182 | syl22anc 835 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) ⊆ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) |
184 | | volss 24602 |
. . . . . . . . . . . . . 14
⊢ ((((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) ∈ dom vol ∧ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ∈ dom vol ∧ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) ⊆ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))) ≤ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))) |
185 | 63, 135, 183, 184 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))) ≤ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))) |
186 | 54, 55, 64, 134, 185 | sge0lempt 43838 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) |
187 | 97, 133, 98, 186 | leadd1dd 11519 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) →
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) + 𝐴) ≤
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴)) |
188 | 53, 99, 124, 132, 187 | letrd 11062 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑈) → 𝑧 ≤
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴)) |
189 | 188 | ex 412 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ 𝑈 → 𝑧 ≤
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴))) |
190 | 50, 189 | ralrimi 3139 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ 𝑈 𝑧 ≤
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴)) |
191 | | suprleub 11871 |
. . . . . . . . 9
⊢ (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑈 𝑦 ≤ 𝑥) ∧
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴) ∈ ℝ) → (sup(𝑈, ℝ, < ) ≤
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴) ↔ ∀𝑧 ∈ 𝑈 𝑧 ≤
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴))) |
192 | 52, 46, 150, 123, 191 | syl31anc 1371 |
. . . . . . . 8
⊢ (𝜑 → (sup(𝑈, ℝ, < ) ≤
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴) ↔ ∀𝑧 ∈ 𝑈 𝑧 ≤
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴))) |
193 | 190, 192 | mpbird 256 |
. . . . . . 7
⊢ (𝜑 → sup(𝑈, ℝ, < ) ≤
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴)) |
194 | 49, 193 | eqbrtrd 5092 |
. . . . . 6
⊢ (𝜑 → 𝑆 ≤
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴)) |
195 | 100, 2, 122 | lesubaddd 11502 |
. . . . . 6
⊢ (𝜑 → ((𝑆 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ↔ 𝑆 ≤
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + 𝐴))) |
196 | 194, 195 | mpbird 256 |
. . . . 5
⊢ (𝜑 → (𝑆 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) |
197 | 48, 196 | jca 511 |
. . . 4
⊢ (𝜑 → (𝑆 ∈ (𝐴[,]𝐵) ∧ (𝑆 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) |
198 | | oveq1 7262 |
. . . . . 6
⊢ (𝑧 = 𝑆 → (𝑧 − 𝐴) = (𝑆 − 𝐴)) |
199 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑆 → ((𝐷‘𝑗) ≤ 𝑧 ↔ (𝐷‘𝑗) ≤ 𝑆)) |
200 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑆 → 𝑧 = 𝑆) |
201 | 199, 200 | ifbieq2d 4482 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑆 → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) = if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) |
202 | 201 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑧 = 𝑆 → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) = ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) |
203 | 202 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑧 = 𝑆 → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))) = (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))) |
204 | 203 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑧 = 𝑆 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) |
205 | 204 | fveq2d 6760 |
. . . . . 6
⊢ (𝑧 = 𝑆 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) |
206 | 198, 205 | breq12d 5083 |
. . . . 5
⊢ (𝑧 = 𝑆 → ((𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) ↔ (𝑆 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) |
207 | 206 | elrab 3617 |
. . . 4
⊢ (𝑆 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))} ↔ (𝑆 ∈ (𝐴[,]𝐵) ∧ (𝑆 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) |
208 | 197, 207 | sylibr 233 |
. . 3
⊢ (𝜑 → 𝑆 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))}) |
209 | 208, 4 | eleqtrrdi 2850 |
. 2
⊢ (𝜑 → 𝑆 ∈ 𝑈) |
210 | 209, 45, 150 | 3jca 1126 |
1
⊢ (𝜑 → (𝑆 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑈 𝑦 ≤ 𝑥)) |