Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmv1lelem1 Structured version   Visualization version   GIF version

Theorem hoidmv1lelem1 44822
Description: The supremum of 𝑈 belongs to 𝑈. This is the last part of step (a) and the whole step (b) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmv1lelem1.a (𝜑𝐴 ∈ ℝ)
hoidmv1lelem1.b (𝜑𝐵 ∈ ℝ)
hoidmv1lelem1.l (𝜑𝐴 < 𝐵)
hoidmv1lelem1.c (𝜑𝐶:ℕ⟶ℝ)
hoidmv1lelem1.d (𝜑𝐷:ℕ⟶ℝ)
hoidmv1lelem1.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
hoidmv1lelem1.u 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
hoidmv1lelem1.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
hoidmv1lelem1 (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
Distinct variable groups:   𝐴,𝑗,𝑧   𝑦,𝐴   𝑥,𝐵,𝑦   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑆,𝑗,𝑧   𝑈,𝑗,𝑧   𝑥,𝑈,𝑦   𝜑,𝑗,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑗)   𝐶(𝑥,𝑦,𝑗)   𝐷(𝑥,𝑦,𝑗)   𝑆(𝑥,𝑦)

Proof of Theorem hoidmv1lelem1
StepHypRef Expression
1 hoidmv1lelem1.s . . . . . 6 𝑆 = sup(𝑈, ℝ, < )
2 hoidmv1lelem1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3 hoidmv1lelem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
4 hoidmv1lelem1.u . . . . . . . . 9 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
5 ssrab2 4037 . . . . . . . . 9 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ⊆ (𝐴[,]𝐵)
64, 5eqsstri 3978 . . . . . . . 8 𝑈 ⊆ (𝐴[,]𝐵)
76a1i 11 . . . . . . 7 (𝜑𝑈 ⊆ (𝐴[,]𝐵))
82rexrd 11205 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
93rexrd 11205 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
10 hoidmv1lelem1.l . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
112, 3, 10ltled 11303 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
12 lbicc2 13381 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
138, 9, 11, 12syl3anc 1371 . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐴[,]𝐵))
142recnd 11183 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
1514subidd 11500 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐴) = 0)
16 nfv 1917 . . . . . . . . . . . . 13 𝑗𝜑
17 nnex 12159 . . . . . . . . . . . . . 14 ℕ ∈ V
1817a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ ∈ V)
19 volf 24893 . . . . . . . . . . . . . . 15 vol:dom vol⟶(0[,]+∞)
2019a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
21 hoidmv1lelem1.c . . . . . . . . . . . . . . . 16 (𝜑𝐶:ℕ⟶ℝ)
2221ffvelcdmda 7035 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ)
23 hoidmv1lelem1.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐷:ℕ⟶ℝ)
2423ffvelcdmda 7035 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ)
252adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ ℝ)
2624, 25ifcld 4532 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴) ∈ ℝ)
2726rexrd 11205 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴) ∈ ℝ*)
28 icombl 24928 . . . . . . . . . . . . . . 15 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)) ∈ dom vol)
2922, 27, 28syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)) ∈ dom vol)
3020, 29ffvelcdmd 7036 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))) ∈ (0[,]+∞))
3116, 18, 30sge0ge0mpt 44669 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))))
3215, 31eqbrtrd 5127 . . . . . . . . . . 11 (𝜑 → (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))))
3313, 32jca 512 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))))
34 oveq1 7364 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (𝑧𝐴) = (𝐴𝐴))
35 breq2 5109 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝐴 → ((𝐷𝑗) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝐴))
36 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝐴𝑧 = 𝐴)
3735, 36ifbieq2d 4512 . . . . . . . . . . . . . . . 16 (𝑧 = 𝐴 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))
3837oveq2d 7373 . . . . . . . . . . . . . . 15 (𝑧 = 𝐴 → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))
3938fveq2d 6846 . . . . . . . . . . . . . 14 (𝑧 = 𝐴 → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))
4039mpteq2dv 5207 . . . . . . . . . . . . 13 (𝑧 = 𝐴 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))
4140fveq2d 6846 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))))
4234, 41breq12d 5118 . . . . . . . . . . 11 (𝑧 = 𝐴 → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))))
4342elrab 3645 . . . . . . . . . 10 (𝐴 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))))
4433, 43sylibr 233 . . . . . . . . 9 (𝜑𝐴 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
4544, 4eleqtrrdi 2849 . . . . . . . 8 (𝜑𝐴𝑈)
4645ne0d 4295 . . . . . . 7 (𝜑𝑈 ≠ ∅)
472, 3, 7, 46supicc 13418 . . . . . 6 (𝜑 → sup(𝑈, ℝ, < ) ∈ (𝐴[,]𝐵))
481, 47eqeltrid 2842 . . . . 5 (𝜑𝑆 ∈ (𝐴[,]𝐵))
491a1i 11 . . . . . . 7 (𝜑𝑆 = sup(𝑈, ℝ, < ))
50 nfv 1917 . . . . . . . . 9 𝑧𝜑
512, 3iccssred 13351 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
527, 51sstrd 3954 . . . . . . . . . . . 12 (𝜑𝑈 ⊆ ℝ)
5352sselda 3944 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → 𝑧 ∈ ℝ)
54 nfv 1917 . . . . . . . . . . . . . . . 16 𝑗(𝜑𝑧𝑈)
5517a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → ℕ ∈ V)
5619a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
5722adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ)
5824adantlr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ)
5953adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → 𝑧 ∈ ℝ)
6058, 59ifcld 4532 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ)
6160rexrd 11205 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ*)
62 icombl 24928 . . . . . . . . . . . . . . . . . 18 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol)
6357, 61, 62syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol)
6456, 63ffvelcdmd 7036 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ∈ (0[,]+∞))
6554, 55, 64sge0xrclmpt 44659 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ∈ ℝ*)
66 pnfxr 11209 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
6766a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑈) → +∞ ∈ ℝ*)
68 hoidmv1lelem1.r . . . . . . . . . . . . . . . . . 18 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
6968rexrd 11205 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ*)
7069adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ*)
7124rexrd 11205 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ*)
72 icombl 24928 . . . . . . . . . . . . . . . . . . . 20 (((𝐶𝑗) ∈ ℝ ∧ (𝐷𝑗) ∈ ℝ*) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
7322, 71, 72syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
7420, 73ffvelcdmd 7036 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)(𝐷𝑗))) ∈ (0[,]+∞))
7574adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)(𝐷𝑗))) ∈ (0[,]+∞))
7673adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
7722rexrd 11205 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ*)
7877adantlr 713 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ*)
7971adantlr 713 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ*)
8022leidd 11721 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ≤ (𝐶𝑗))
8180adantlr 713 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗) ≤ (𝐶𝑗))
82 min1 13108 . . . . . . . . . . . . . . . . . . . 20 (((𝐷𝑗) ∈ ℝ ∧ 𝑧 ∈ ℝ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ (𝐷𝑗))
8358, 59, 82syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ (𝐷𝑗))
84 icossico 13334 . . . . . . . . . . . . . . . . . . 19 ((((𝐶𝑗) ∈ ℝ* ∧ (𝐷𝑗) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ (𝐷𝑗))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
8578, 79, 81, 83, 84syl22anc 837 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
86 volss 24897 . . . . . . . . . . . . . . . . . 18 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol ∧ ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
8763, 76, 85, 86syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
8854, 55, 64, 75, 87sge0lempt 44641 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
8968ltpnfd 13042 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) < +∞)
9089adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) < +∞)
9165, 70, 67, 88, 90xrlelttrd 13079 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) < +∞)
9265, 67, 91xrltned 43581 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ≠ +∞)
9392neneqd 2948 . . . . . . . . . . . . 13 ((𝜑𝑧𝑈) → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = +∞)
94 eqid 2736 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
9564, 94fmptd 7062 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑈) → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))):ℕ⟶(0[,]+∞))
9655, 95sge0repnf 44617 . . . . . . . . . . . . 13 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = +∞))
9793, 96mpbird 256 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ∈ ℝ)
982adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → 𝐴 ∈ ℝ)
9997, 98readdcld 11184 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴) ∈ ℝ)
10051, 48sseldd 3945 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑆 ∈ ℝ)
101100adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → 𝑆 ∈ ℝ)
10224, 101ifcld 4532 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ)
103102rexrd 11205 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*)
104 icombl 24928 . . . . . . . . . . . . . . . . . . 19 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol)
10522, 103, 104syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol)
10620, 105ffvelcdmd 7036 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ∈ (0[,]+∞))
10716, 18, 106sge0xrclmpt 44659 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ*)
10866a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → +∞ ∈ ℝ*)
109 min1 13108 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷𝑗) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ≤ (𝐷𝑗))
11024, 101, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ≤ (𝐷𝑗))
111 icossico 13334 . . . . . . . . . . . . . . . . . . . 20 ((((𝐶𝑗) ∈ ℝ* ∧ (𝐷𝑗) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ≤ (𝐷𝑗))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
11277, 71, 80, 110, 111syl22anc 837 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
113 volss 24897 . . . . . . . . . . . . . . . . . . 19 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol ∧ ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
114105, 73, 112, 113syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
11516, 18, 106, 74, 114sge0lempt 44641 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
116107, 69, 108, 115, 89xrlelttrd 13079 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) < +∞)
117107, 108, 116xrltned 43581 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ≠ +∞)
118117neneqd 2948 . . . . . . . . . . . . . 14 (𝜑 → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) = +∞)
119 eqid 2736 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
120106, 119fmptd 7062 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))):ℕ⟶(0[,]+∞))
12118, 120sge0repnf 44617 . . . . . . . . . . . . . 14 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) = +∞))
122118, 121mpbird 256 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ)
123122, 2readdcld 11184 . . . . . . . . . . . 12 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ∈ ℝ)
124123adantr 481 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ∈ ℝ)
1254eleq2i 2829 . . . . . . . . . . . . . . . 16 (𝑧𝑈𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
126125biimpi 215 . . . . . . . . . . . . . . 15 (𝑧𝑈𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
127126adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑈) → 𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
128 rabid 3427 . . . . . . . . . . . . . 14 (𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))))
129127, 128sylib 217 . . . . . . . . . . . . 13 ((𝜑𝑧𝑈) → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))))
130129simprd 496 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))))
13153, 98, 97lesubaddd 11752 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴)))
132130, 131mpbid 231 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴))
133122adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ)
134106adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ∈ (0[,]+∞))
135105adantlr 713 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol)
136103adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*)
13760adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ)
138 eqidd 2737 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) = (𝐷𝑗))
139 iftrue 4492 . . . . . . . . . . . . . . . . . . 19 ((𝐷𝑗) ≤ 𝑧 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = (𝐷𝑗))
140139adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = (𝐷𝑗))
14158adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ∈ ℝ)
14259adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → 𝑧 ∈ ℝ)
143100ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → 𝑆 ∈ ℝ)
144 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ≤ 𝑧)
14552adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → 𝑈 ⊆ ℝ)
14646adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → 𝑈 ≠ ∅)
1472, 3jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
148 iccsupr 13359 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑈 ⊆ (𝐴[,]𝐵) ∧ 𝐴𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
149147, 7, 45, 148syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
150149simp3d 1144 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
151150adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
152127, 125sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → 𝑧𝑈)
153 suprub 12116 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝑧𝑈) → 𝑧 ≤ sup(𝑈, ℝ, < ))
154145, 146, 151, 152, 153syl31anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧𝑈) → 𝑧 ≤ sup(𝑈, ℝ, < ))
155154, 1breqtrrdi 5147 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑈) → 𝑧𝑆)
156155ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → 𝑧𝑆)
157141, 142, 143, 144, 156letrd 11312 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ≤ 𝑆)
158157iftrued 4494 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = (𝐷𝑗))
159138, 140, 1583eqtr4d 2786 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
160137, 159eqled 11258 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
16159adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → 𝑧 ∈ ℝ)
16258adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ∈ ℝ)
163 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → ¬ (𝐷𝑗) ≤ 𝑧)
164161, 162ltnled 11302 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → (𝑧 < (𝐷𝑗) ↔ ¬ (𝐷𝑗) ≤ 𝑧))
165163, 164mpbird 256 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → 𝑧 < (𝐷𝑗))
166161, 162, 165ltled 11303 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → 𝑧 ≤ (𝐷𝑗))
167166adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → 𝑧 ≤ (𝐷𝑗))
168 iffalse 4495 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝐷𝑗) ≤ 𝑧 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = 𝑧)
169168ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = 𝑧)
170 iftrue 4492 . . . . . . . . . . . . . . . . . . . 20 ((𝐷𝑗) ≤ 𝑆 → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = (𝐷𝑗))
171170adantl 482 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = (𝐷𝑗))
172169, 171breq12d 5118 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → (if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ↔ 𝑧 ≤ (𝐷𝑗)))
173167, 172mpbird 256 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
174155ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → 𝑧𝑆)
175168ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = 𝑧)
176 iffalse 4495 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝐷𝑗) ≤ 𝑆 → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = 𝑆)
177176adantl 482 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = 𝑆)
178175, 177breq12d 5118 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → (if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ↔ 𝑧𝑆))
179174, 178mpbird 256 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
180173, 179pm2.61dan 811 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
181160, 180pm2.61dan 811 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
182 icossico 13334 . . . . . . . . . . . . . . 15 ((((𝐶𝑗) ∈ ℝ* ∧ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))
18378, 136, 81, 181, 182syl22anc 837 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))
184 volss 24897 . . . . . . . . . . . . . 14 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
18563, 135, 183, 184syl3anc 1371 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
18654, 55, 64, 134, 185sge0lempt 44641 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))))
18797, 133, 98, 186leadd1dd 11769 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
18853, 99, 124, 132, 187letrd 11312 . . . . . . . . . 10 ((𝜑𝑧𝑈) → 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
189188ex 413 . . . . . . . . 9 (𝜑 → (𝑧𝑈𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
19050, 189ralrimi 3240 . . . . . . . 8 (𝜑 → ∀𝑧𝑈 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
191 suprleub 12121 . . . . . . . . 9 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ∈ ℝ) → (sup(𝑈, ℝ, < ) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ↔ ∀𝑧𝑈 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
19252, 46, 150, 123, 191syl31anc 1373 . . . . . . . 8 (𝜑 → (sup(𝑈, ℝ, < ) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ↔ ∀𝑧𝑈 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
193190, 192mpbird 256 . . . . . . 7 (𝜑 → sup(𝑈, ℝ, < ) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
19449, 193eqbrtrd 5127 . . . . . 6 (𝜑𝑆 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
195100, 2, 122lesubaddd 11752 . . . . . 6 (𝜑 → ((𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ↔ 𝑆 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
196194, 195mpbird 256 . . . . 5 (𝜑 → (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))))
19748, 196jca 512 . . . 4 (𝜑 → (𝑆 ∈ (𝐴[,]𝐵) ∧ (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))))
198 oveq1 7364 . . . . . 6 (𝑧 = 𝑆 → (𝑧𝐴) = (𝑆𝐴))
199 breq2 5109 . . . . . . . . . . 11 (𝑧 = 𝑆 → ((𝐷𝑗) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝑆))
200 id 22 . . . . . . . . . . 11 (𝑧 = 𝑆𝑧 = 𝑆)
201199, 200ifbieq2d 4512 . . . . . . . . . 10 (𝑧 = 𝑆 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
202201oveq2d 7373 . . . . . . . . 9 (𝑧 = 𝑆 → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))
203202fveq2d 6846 . . . . . . . 8 (𝑧 = 𝑆 → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
204203mpteq2dv 5207 . . . . . . 7 (𝑧 = 𝑆 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))
205204fveq2d 6846 . . . . . 6 (𝑧 = 𝑆 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))))
206198, 205breq12d 5118 . . . . 5 (𝑧 = 𝑆 → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))))
207206elrab 3645 . . . 4 (𝑆 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝑆 ∈ (𝐴[,]𝐵) ∧ (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))))
208197, 207sylibr 233 . . 3 (𝜑𝑆 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
209208, 4eleqtrrdi 2849 . 2 (𝜑𝑆𝑈)
210209, 45, 1503jca 1128 1 (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  wss 3910  c0 4282  ifcif 4486   class class class wbr 5105  cmpt 5188  dom cdm 5633  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  cr 11050  0cc0 11051   + caddc 11054  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cmin 11385  cn 12153  [,)cico 13266  [,]cicc 13267  volcvol 24827  Σ^csumge0 44593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xadd 13034  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-xmet 20789  df-met 20790  df-ovol 24828  df-vol 24829  df-sumge0 44594
This theorem is referenced by:  hoidmv1lelem3  44824
  Copyright terms: Public domain W3C validator