Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmv1lelem1 Structured version   Visualization version   GIF version

Theorem hoidmv1lelem1 44466
Description: The supremum of 𝑈 belongs to 𝑈. This is the last part of step (a) and the whole step (b) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmv1lelem1.a (𝜑𝐴 ∈ ℝ)
hoidmv1lelem1.b (𝜑𝐵 ∈ ℝ)
hoidmv1lelem1.l (𝜑𝐴 < 𝐵)
hoidmv1lelem1.c (𝜑𝐶:ℕ⟶ℝ)
hoidmv1lelem1.d (𝜑𝐷:ℕ⟶ℝ)
hoidmv1lelem1.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
hoidmv1lelem1.u 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
hoidmv1lelem1.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
hoidmv1lelem1 (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
Distinct variable groups:   𝐴,𝑗,𝑧   𝑦,𝐴   𝑥,𝐵,𝑦   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑆,𝑗,𝑧   𝑈,𝑗,𝑧   𝑥,𝑈,𝑦   𝜑,𝑗,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑗)   𝐶(𝑥,𝑦,𝑗)   𝐷(𝑥,𝑦,𝑗)   𝑆(𝑥,𝑦)

Proof of Theorem hoidmv1lelem1
StepHypRef Expression
1 hoidmv1lelem1.s . . . . . 6 𝑆 = sup(𝑈, ℝ, < )
2 hoidmv1lelem1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3 hoidmv1lelem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
4 hoidmv1lelem1.u . . . . . . . . 9 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
5 ssrab2 4025 . . . . . . . . 9 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ⊆ (𝐴[,]𝐵)
64, 5eqsstri 3966 . . . . . . . 8 𝑈 ⊆ (𝐴[,]𝐵)
76a1i 11 . . . . . . 7 (𝜑𝑈 ⊆ (𝐴[,]𝐵))
82rexrd 11126 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
93rexrd 11126 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
10 hoidmv1lelem1.l . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
112, 3, 10ltled 11224 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
12 lbicc2 13297 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
138, 9, 11, 12syl3anc 1370 . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐴[,]𝐵))
142recnd 11104 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
1514subidd 11421 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐴) = 0)
16 nfv 1916 . . . . . . . . . . . . 13 𝑗𝜑
17 nnex 12080 . . . . . . . . . . . . . 14 ℕ ∈ V
1817a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ ∈ V)
19 volf 24799 . . . . . . . . . . . . . . 15 vol:dom vol⟶(0[,]+∞)
2019a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
21 hoidmv1lelem1.c . . . . . . . . . . . . . . . 16 (𝜑𝐶:ℕ⟶ℝ)
2221ffvelcdmda 7017 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ)
23 hoidmv1lelem1.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐷:ℕ⟶ℝ)
2423ffvelcdmda 7017 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ)
252adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ ℝ)
2624, 25ifcld 4519 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴) ∈ ℝ)
2726rexrd 11126 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴) ∈ ℝ*)
28 icombl 24834 . . . . . . . . . . . . . . 15 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)) ∈ dom vol)
2922, 27, 28syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)) ∈ dom vol)
3020, 29ffvelcdmd 7018 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))) ∈ (0[,]+∞))
3116, 18, 30sge0ge0mpt 44313 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))))
3215, 31eqbrtrd 5114 . . . . . . . . . . 11 (𝜑 → (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))))
3313, 32jca 512 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))))
34 oveq1 7344 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (𝑧𝐴) = (𝐴𝐴))
35 breq2 5096 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝐴 → ((𝐷𝑗) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝐴))
36 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝐴𝑧 = 𝐴)
3735, 36ifbieq2d 4499 . . . . . . . . . . . . . . . 16 (𝑧 = 𝐴 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))
3837oveq2d 7353 . . . . . . . . . . . . . . 15 (𝑧 = 𝐴 → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))
3938fveq2d 6829 . . . . . . . . . . . . . 14 (𝑧 = 𝐴 → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))
4039mpteq2dv 5194 . . . . . . . . . . . . 13 (𝑧 = 𝐴 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))
4140fveq2d 6829 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))))
4234, 41breq12d 5105 . . . . . . . . . . 11 (𝑧 = 𝐴 → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))))
4342elrab 3634 . . . . . . . . . 10 (𝐴 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))))
4433, 43sylibr 233 . . . . . . . . 9 (𝜑𝐴 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
4544, 4eleqtrrdi 2848 . . . . . . . 8 (𝜑𝐴𝑈)
4645ne0d 4282 . . . . . . 7 (𝜑𝑈 ≠ ∅)
472, 3, 7, 46supicc 13334 . . . . . 6 (𝜑 → sup(𝑈, ℝ, < ) ∈ (𝐴[,]𝐵))
481, 47eqeltrid 2841 . . . . 5 (𝜑𝑆 ∈ (𝐴[,]𝐵))
491a1i 11 . . . . . . 7 (𝜑𝑆 = sup(𝑈, ℝ, < ))
50 nfv 1916 . . . . . . . . 9 𝑧𝜑
512, 3iccssred 13267 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
527, 51sstrd 3942 . . . . . . . . . . . 12 (𝜑𝑈 ⊆ ℝ)
5352sselda 3932 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → 𝑧 ∈ ℝ)
54 nfv 1916 . . . . . . . . . . . . . . . 16 𝑗(𝜑𝑧𝑈)
5517a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → ℕ ∈ V)
5619a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
5722adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ)
5824adantlr 712 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ)
5953adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → 𝑧 ∈ ℝ)
6058, 59ifcld 4519 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ)
6160rexrd 11126 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ*)
62 icombl 24834 . . . . . . . . . . . . . . . . . 18 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol)
6357, 61, 62syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol)
6456, 63ffvelcdmd 7018 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ∈ (0[,]+∞))
6554, 55, 64sge0xrclmpt 44303 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ∈ ℝ*)
66 pnfxr 11130 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
6766a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑈) → +∞ ∈ ℝ*)
68 hoidmv1lelem1.r . . . . . . . . . . . . . . . . . 18 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
6968rexrd 11126 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ*)
7069adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ*)
7124rexrd 11126 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ*)
72 icombl 24834 . . . . . . . . . . . . . . . . . . . 20 (((𝐶𝑗) ∈ ℝ ∧ (𝐷𝑗) ∈ ℝ*) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
7322, 71, 72syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
7420, 73ffvelcdmd 7018 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)(𝐷𝑗))) ∈ (0[,]+∞))
7574adantlr 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)(𝐷𝑗))) ∈ (0[,]+∞))
7673adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
7722rexrd 11126 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ*)
7877adantlr 712 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ*)
7971adantlr 712 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ*)
8022leidd 11642 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ≤ (𝐶𝑗))
8180adantlr 712 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗) ≤ (𝐶𝑗))
82 min1 13024 . . . . . . . . . . . . . . . . . . . 20 (((𝐷𝑗) ∈ ℝ ∧ 𝑧 ∈ ℝ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ (𝐷𝑗))
8358, 59, 82syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ (𝐷𝑗))
84 icossico 13250 . . . . . . . . . . . . . . . . . . 19 ((((𝐶𝑗) ∈ ℝ* ∧ (𝐷𝑗) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ (𝐷𝑗))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
8578, 79, 81, 83, 84syl22anc 836 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
86 volss 24803 . . . . . . . . . . . . . . . . . 18 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol ∧ ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
8763, 76, 85, 86syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
8854, 55, 64, 75, 87sge0lempt 44285 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
8968ltpnfd 12958 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) < +∞)
9089adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) < +∞)
9165, 70, 67, 88, 90xrlelttrd 12995 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) < +∞)
9265, 67, 91xrltned 43231 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ≠ +∞)
9392neneqd 2945 . . . . . . . . . . . . 13 ((𝜑𝑧𝑈) → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = +∞)
94 eqid 2736 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
9564, 94fmptd 7044 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑈) → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))):ℕ⟶(0[,]+∞))
9655, 95sge0repnf 44261 . . . . . . . . . . . . 13 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = +∞))
9793, 96mpbird 256 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ∈ ℝ)
982adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → 𝐴 ∈ ℝ)
9997, 98readdcld 11105 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴) ∈ ℝ)
10051, 48sseldd 3933 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑆 ∈ ℝ)
101100adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → 𝑆 ∈ ℝ)
10224, 101ifcld 4519 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ)
103102rexrd 11126 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*)
104 icombl 24834 . . . . . . . . . . . . . . . . . . 19 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol)
10522, 103, 104syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol)
10620, 105ffvelcdmd 7018 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ∈ (0[,]+∞))
10716, 18, 106sge0xrclmpt 44303 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ*)
10866a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → +∞ ∈ ℝ*)
109 min1 13024 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷𝑗) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ≤ (𝐷𝑗))
11024, 101, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ≤ (𝐷𝑗))
111 icossico 13250 . . . . . . . . . . . . . . . . . . . 20 ((((𝐶𝑗) ∈ ℝ* ∧ (𝐷𝑗) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ≤ (𝐷𝑗))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
11277, 71, 80, 110, 111syl22anc 836 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
113 volss 24803 . . . . . . . . . . . . . . . . . . 19 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol ∧ ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
114105, 73, 112, 113syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
11516, 18, 106, 74, 114sge0lempt 44285 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
116107, 69, 108, 115, 89xrlelttrd 12995 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) < +∞)
117107, 108, 116xrltned 43231 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ≠ +∞)
118117neneqd 2945 . . . . . . . . . . . . . 14 (𝜑 → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) = +∞)
119 eqid 2736 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
120106, 119fmptd 7044 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))):ℕ⟶(0[,]+∞))
12118, 120sge0repnf 44261 . . . . . . . . . . . . . 14 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) = +∞))
122118, 121mpbird 256 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ)
123122, 2readdcld 11105 . . . . . . . . . . . 12 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ∈ ℝ)
124123adantr 481 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ∈ ℝ)
1254eleq2i 2828 . . . . . . . . . . . . . . . 16 (𝑧𝑈𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
126125biimpi 215 . . . . . . . . . . . . . . 15 (𝑧𝑈𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
127126adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑈) → 𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
128 rabid 3423 . . . . . . . . . . . . . 14 (𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))))
129127, 128sylib 217 . . . . . . . . . . . . 13 ((𝜑𝑧𝑈) → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))))
130129simprd 496 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))))
13153, 98, 97lesubaddd 11673 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴)))
132130, 131mpbid 231 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴))
133122adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ)
134106adantlr 712 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ∈ (0[,]+∞))
135105adantlr 712 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol)
136103adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*)
13760adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ)
138 eqidd 2737 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) = (𝐷𝑗))
139 iftrue 4479 . . . . . . . . . . . . . . . . . . 19 ((𝐷𝑗) ≤ 𝑧 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = (𝐷𝑗))
140139adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = (𝐷𝑗))
14158adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ∈ ℝ)
14259adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → 𝑧 ∈ ℝ)
143100ad3antrrr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → 𝑆 ∈ ℝ)
144 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ≤ 𝑧)
14552adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → 𝑈 ⊆ ℝ)
14646adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → 𝑈 ≠ ∅)
1472, 3jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
148 iccsupr 13275 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑈 ⊆ (𝐴[,]𝐵) ∧ 𝐴𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
149147, 7, 45, 148syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
150149simp3d 1143 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
151150adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
152127, 125sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → 𝑧𝑈)
153 suprub 12037 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝑧𝑈) → 𝑧 ≤ sup(𝑈, ℝ, < ))
154145, 146, 151, 152, 153syl31anc 1372 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧𝑈) → 𝑧 ≤ sup(𝑈, ℝ, < ))
155154, 1breqtrrdi 5134 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑈) → 𝑧𝑆)
156155ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → 𝑧𝑆)
157141, 142, 143, 144, 156letrd 11233 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ≤ 𝑆)
158157iftrued 4481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = (𝐷𝑗))
159138, 140, 1583eqtr4d 2786 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
160137, 159eqled 11179 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
16159adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → 𝑧 ∈ ℝ)
16258adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ∈ ℝ)
163 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → ¬ (𝐷𝑗) ≤ 𝑧)
164161, 162ltnled 11223 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → (𝑧 < (𝐷𝑗) ↔ ¬ (𝐷𝑗) ≤ 𝑧))
165163, 164mpbird 256 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → 𝑧 < (𝐷𝑗))
166161, 162, 165ltled 11224 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → 𝑧 ≤ (𝐷𝑗))
167166adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → 𝑧 ≤ (𝐷𝑗))
168 iffalse 4482 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝐷𝑗) ≤ 𝑧 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = 𝑧)
169168ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = 𝑧)
170 iftrue 4479 . . . . . . . . . . . . . . . . . . . 20 ((𝐷𝑗) ≤ 𝑆 → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = (𝐷𝑗))
171170adantl 482 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = (𝐷𝑗))
172169, 171breq12d 5105 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → (if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ↔ 𝑧 ≤ (𝐷𝑗)))
173167, 172mpbird 256 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
174155ad3antrrr 727 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → 𝑧𝑆)
175168ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = 𝑧)
176 iffalse 4482 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝐷𝑗) ≤ 𝑆 → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = 𝑆)
177176adantl 482 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = 𝑆)
178175, 177breq12d 5105 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → (if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ↔ 𝑧𝑆))
179174, 178mpbird 256 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
180173, 179pm2.61dan 810 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
181160, 180pm2.61dan 810 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
182 icossico 13250 . . . . . . . . . . . . . . 15 ((((𝐶𝑗) ∈ ℝ* ∧ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))
18378, 136, 81, 181, 182syl22anc 836 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))
184 volss 24803 . . . . . . . . . . . . . 14 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
18563, 135, 183, 184syl3anc 1370 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
18654, 55, 64, 134, 185sge0lempt 44285 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))))
18797, 133, 98, 186leadd1dd 11690 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
18853, 99, 124, 132, 187letrd 11233 . . . . . . . . . 10 ((𝜑𝑧𝑈) → 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
189188ex 413 . . . . . . . . 9 (𝜑 → (𝑧𝑈𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
19050, 189ralrimi 3236 . . . . . . . 8 (𝜑 → ∀𝑧𝑈 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
191 suprleub 12042 . . . . . . . . 9 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ∈ ℝ) → (sup(𝑈, ℝ, < ) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ↔ ∀𝑧𝑈 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
19252, 46, 150, 123, 191syl31anc 1372 . . . . . . . 8 (𝜑 → (sup(𝑈, ℝ, < ) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ↔ ∀𝑧𝑈 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
193190, 192mpbird 256 . . . . . . 7 (𝜑 → sup(𝑈, ℝ, < ) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
19449, 193eqbrtrd 5114 . . . . . 6 (𝜑𝑆 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
195100, 2, 122lesubaddd 11673 . . . . . 6 (𝜑 → ((𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ↔ 𝑆 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
196194, 195mpbird 256 . . . . 5 (𝜑 → (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))))
19748, 196jca 512 . . . 4 (𝜑 → (𝑆 ∈ (𝐴[,]𝐵) ∧ (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))))
198 oveq1 7344 . . . . . 6 (𝑧 = 𝑆 → (𝑧𝐴) = (𝑆𝐴))
199 breq2 5096 . . . . . . . . . . 11 (𝑧 = 𝑆 → ((𝐷𝑗) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝑆))
200 id 22 . . . . . . . . . . 11 (𝑧 = 𝑆𝑧 = 𝑆)
201199, 200ifbieq2d 4499 . . . . . . . . . 10 (𝑧 = 𝑆 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
202201oveq2d 7353 . . . . . . . . 9 (𝑧 = 𝑆 → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))
203202fveq2d 6829 . . . . . . . 8 (𝑧 = 𝑆 → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
204203mpteq2dv 5194 . . . . . . 7 (𝑧 = 𝑆 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))
205204fveq2d 6829 . . . . . 6 (𝑧 = 𝑆 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))))
206198, 205breq12d 5105 . . . . 5 (𝑧 = 𝑆 → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))))
207206elrab 3634 . . . 4 (𝑆 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝑆 ∈ (𝐴[,]𝐵) ∧ (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))))
208197, 207sylibr 233 . . 3 (𝜑𝑆 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
209208, 4eleqtrrdi 2848 . 2 (𝜑𝑆𝑈)
210209, 45, 1503jca 1127 1 (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wral 3061  wrex 3070  {crab 3403  Vcvv 3441  wss 3898  c0 4269  ifcif 4473   class class class wbr 5092  cmpt 5175  dom cdm 5620  wf 6475  cfv 6479  (class class class)co 7337  supcsup 9297  cr 10971  0cc0 10972   + caddc 10975  +∞cpnf 11107  *cxr 11109   < clt 11110  cle 11111  cmin 11306  cn 12074  [,)cico 13182  [,]cicc 13183  volcvol 24733  Σ^csumge0 44237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-map 8688  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-sup 9299  df-inf 9300  df-oi 9367  df-dju 9758  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-n0 12335  df-z 12421  df-uz 12684  df-q 12790  df-rp 12832  df-xadd 12950  df-ioo 13184  df-ico 13186  df-icc 13187  df-fz 13341  df-fzo 13484  df-fl 13613  df-seq 13823  df-exp 13884  df-hash 14146  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-clim 15296  df-rlim 15297  df-sum 15497  df-xmet 20696  df-met 20697  df-ovol 24734  df-vol 24735  df-sumge0 44238
This theorem is referenced by:  hoidmv1lelem3  44468
  Copyright terms: Public domain W3C validator