Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmv1lelem1 Structured version   Visualization version   GIF version

Theorem hoidmv1lelem1 46751
Description: The supremum of 𝑈 belongs to 𝑈. This is the last part of step (a) and the whole step (b) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmv1lelem1.a (𝜑𝐴 ∈ ℝ)
hoidmv1lelem1.b (𝜑𝐵 ∈ ℝ)
hoidmv1lelem1.l (𝜑𝐴 < 𝐵)
hoidmv1lelem1.c (𝜑𝐶:ℕ⟶ℝ)
hoidmv1lelem1.d (𝜑𝐷:ℕ⟶ℝ)
hoidmv1lelem1.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
hoidmv1lelem1.u 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
hoidmv1lelem1.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
hoidmv1lelem1 (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
Distinct variable groups:   𝐴,𝑗,𝑧   𝑦,𝐴   𝑥,𝐵,𝑦   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑆,𝑗,𝑧   𝑈,𝑗,𝑧   𝑥,𝑈,𝑦   𝜑,𝑗,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑗)   𝐶(𝑥,𝑦,𝑗)   𝐷(𝑥,𝑦,𝑗)   𝑆(𝑥,𝑦)

Proof of Theorem hoidmv1lelem1
StepHypRef Expression
1 hoidmv1lelem1.s . . . . . 6 𝑆 = sup(𝑈, ℝ, < )
2 hoidmv1lelem1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3 hoidmv1lelem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
4 hoidmv1lelem1.u . . . . . . . . 9 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}
5 ssrab2 4029 . . . . . . . . 9 {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ⊆ (𝐴[,]𝐵)
64, 5eqsstri 3977 . . . . . . . 8 𝑈 ⊆ (𝐴[,]𝐵)
76a1i 11 . . . . . . 7 (𝜑𝑈 ⊆ (𝐴[,]𝐵))
82rexrd 11173 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
93rexrd 11173 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
10 hoidmv1lelem1.l . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
112, 3, 10ltled 11272 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
12 lbicc2 13371 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
138, 9, 11, 12syl3anc 1373 . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐴[,]𝐵))
142recnd 11151 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
1514subidd 11471 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐴) = 0)
16 nfv 1915 . . . . . . . . . . . . 13 𝑗𝜑
17 nnex 12142 . . . . . . . . . . . . . 14 ℕ ∈ V
1817a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ ∈ V)
19 volf 25477 . . . . . . . . . . . . . . 15 vol:dom vol⟶(0[,]+∞)
2019a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
21 hoidmv1lelem1.c . . . . . . . . . . . . . . . 16 (𝜑𝐶:ℕ⟶ℝ)
2221ffvelcdmda 7026 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ)
23 hoidmv1lelem1.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐷:ℕ⟶ℝ)
2423ffvelcdmda 7026 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ)
252adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ ℝ)
2624, 25ifcld 4523 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴) ∈ ℝ)
2726rexrd 11173 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴) ∈ ℝ*)
28 icombl 25512 . . . . . . . . . . . . . . 15 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)) ∈ dom vol)
2922, 27, 28syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)) ∈ dom vol)
3020, 29ffvelcdmd 7027 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))) ∈ (0[,]+∞))
3116, 18, 30sge0ge0mpt 46598 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))))
3215, 31eqbrtrd 5117 . . . . . . . . . . 11 (𝜑 → (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))))
3313, 32jca 511 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))))
34 oveq1 7362 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (𝑧𝐴) = (𝐴𝐴))
35 breq2 5099 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝐴 → ((𝐷𝑗) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝐴))
36 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝐴𝑧 = 𝐴)
3735, 36ifbieq2d 4503 . . . . . . . . . . . . . . . 16 (𝑧 = 𝐴 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))
3837oveq2d 7371 . . . . . . . . . . . . . . 15 (𝑧 = 𝐴 → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))
3938fveq2d 6835 . . . . . . . . . . . . . 14 (𝑧 = 𝐴 → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))
4039mpteq2dv 5189 . . . . . . . . . . . . 13 (𝑧 = 𝐴 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))
4140fveq2d 6835 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴))))))
4234, 41breq12d 5108 . . . . . . . . . . 11 (𝑧 = 𝐴 → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))))
4342elrab 3643 . . . . . . . . . 10 (𝐴 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐴𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝐴, (𝐷𝑗), 𝐴)))))))
4433, 43sylibr 234 . . . . . . . . 9 (𝜑𝐴 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
4544, 4eleqtrrdi 2844 . . . . . . . 8 (𝜑𝐴𝑈)
4645ne0d 4291 . . . . . . 7 (𝜑𝑈 ≠ ∅)
472, 3, 7, 46supicc 13408 . . . . . 6 (𝜑 → sup(𝑈, ℝ, < ) ∈ (𝐴[,]𝐵))
481, 47eqeltrid 2837 . . . . 5 (𝜑𝑆 ∈ (𝐴[,]𝐵))
491a1i 11 . . . . . . 7 (𝜑𝑆 = sup(𝑈, ℝ, < ))
50 nfv 1915 . . . . . . . . 9 𝑧𝜑
512, 3iccssred 13341 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
527, 51sstrd 3941 . . . . . . . . . . . 12 (𝜑𝑈 ⊆ ℝ)
5352sselda 3930 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → 𝑧 ∈ ℝ)
54 nfv 1915 . . . . . . . . . . . . . . . 16 𝑗(𝜑𝑧𝑈)
5517a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → ℕ ∈ V)
5619a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
5722adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ)
5824adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ)
5953adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → 𝑧 ∈ ℝ)
6058, 59ifcld 4523 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ)
6160rexrd 11173 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ*)
62 icombl 25512 . . . . . . . . . . . . . . . . . 18 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol)
6357, 61, 62syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol)
6456, 63ffvelcdmd 7027 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ∈ (0[,]+∞))
6554, 55, 64sge0xrclmpt 46588 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ∈ ℝ*)
66 pnfxr 11177 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
6766a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑈) → +∞ ∈ ℝ*)
68 hoidmv1lelem1.r . . . . . . . . . . . . . . . . . 18 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)
6968rexrd 11173 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ*)
7069adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ*)
7124rexrd 11173 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ*)
72 icombl 25512 . . . . . . . . . . . . . . . . . . . 20 (((𝐶𝑗) ∈ ℝ ∧ (𝐷𝑗) ∈ ℝ*) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
7322, 71, 72syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
7420, 73ffvelcdmd 7027 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)(𝐷𝑗))) ∈ (0[,]+∞))
7574adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)(𝐷𝑗))) ∈ (0[,]+∞))
7673adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol)
7722rexrd 11173 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ*)
7877adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗) ∈ ℝ*)
7971adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐷𝑗) ∈ ℝ*)
8022leidd 11694 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ≤ (𝐶𝑗))
8180adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶𝑗) ≤ (𝐶𝑗))
82 min1 13095 . . . . . . . . . . . . . . . . . . . 20 (((𝐷𝑗) ∈ ℝ ∧ 𝑧 ∈ ℝ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ (𝐷𝑗))
8358, 59, 82syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ (𝐷𝑗))
84 icossico 13323 . . . . . . . . . . . . . . . . . . 19 ((((𝐶𝑗) ∈ ℝ* ∧ (𝐷𝑗) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ (𝐷𝑗))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
8578, 79, 81, 83, 84syl22anc 838 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
86 volss 25481 . . . . . . . . . . . . . . . . . 18 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol ∧ ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
8763, 76, 85, 86syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
8854, 55, 64, 75, 87sge0lempt 46570 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
8968ltpnfd 13026 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) < +∞)
9089adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) < +∞)
9165, 70, 67, 88, 90xrlelttrd 13065 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) < +∞)
9265, 67, 91xrltned 45518 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ≠ +∞)
9392neneqd 2934 . . . . . . . . . . . . 13 ((𝜑𝑧𝑈) → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = +∞)
94 eqid 2733 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))
9564, 94fmptd 7056 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑈) → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))):ℕ⟶(0[,]+∞))
9655, 95sge0repnf 46546 . . . . . . . . . . . . 13 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = +∞))
9793, 96mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ∈ ℝ)
982adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → 𝐴 ∈ ℝ)
9997, 98readdcld 11152 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴) ∈ ℝ)
10051, 48sseldd 3931 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑆 ∈ ℝ)
101100adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → 𝑆 ∈ ℝ)
10224, 101ifcld 4523 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ)
103102rexrd 11173 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*)
104 icombl 25512 . . . . . . . . . . . . . . . . . . 19 (((𝐶𝑗) ∈ ℝ ∧ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol)
10522, 103, 104syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol)
10620, 105ffvelcdmd 7027 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ∈ (0[,]+∞))
10716, 18, 106sge0xrclmpt 46588 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ*)
10866a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → +∞ ∈ ℝ*)
109 min1 13095 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷𝑗) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ≤ (𝐷𝑗))
11024, 101, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ≤ (𝐷𝑗))
111 icossico 13323 . . . . . . . . . . . . . . . . . . . 20 ((((𝐶𝑗) ∈ ℝ* ∧ (𝐷𝑗) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ≤ (𝐷𝑗))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
11277, 71, 80, 110, 111syl22anc 838 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗)))
113 volss 25481 . . . . . . . . . . . . . . . . . . 19 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol ∧ ((𝐶𝑗)[,)(𝐷𝑗)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ⊆ ((𝐶𝑗)[,)(𝐷𝑗))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
114105, 73, 112, 113syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ≤ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))
11516, 18, 106, 74, 114sge0lempt 46570 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
116107, 69, 108, 115, 89xrlelttrd 13065 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) < +∞)
117107, 108, 116xrltned 45518 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ≠ +∞)
118117neneqd 2934 . . . . . . . . . . . . . 14 (𝜑 → ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) = +∞)
119 eqid 2733 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
120106, 119fmptd 7056 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))):ℕ⟶(0[,]+∞))
12118, 120sge0repnf 46546 . . . . . . . . . . . . . 14 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ ↔ ¬ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) = +∞))
122118, 121mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ)
123122, 2readdcld 11152 . . . . . . . . . . . 12 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ∈ ℝ)
124123adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ∈ ℝ)
1254eleq2i 2825 . . . . . . . . . . . . . . . 16 (𝑧𝑈𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
126125biimpi 216 . . . . . . . . . . . . . . 15 (𝑧𝑈𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
127126adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑈) → 𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
128 rabid 3417 . . . . . . . . . . . . . 14 (𝑧 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))))
129127, 128sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑧𝑈) → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))))
130129simprd 495 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))))
13153, 98, 97lesubaddd 11725 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴)))
132130, 131mpbid 232 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴))
133122adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ∈ ℝ)
134106adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) ∈ (0[,]+∞))
135105adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol)
136103adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*)
13760adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ∈ ℝ)
138 eqidd 2734 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) = (𝐷𝑗))
139 iftrue 4482 . . . . . . . . . . . . . . . . . . 19 ((𝐷𝑗) ≤ 𝑧 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = (𝐷𝑗))
140139adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = (𝐷𝑗))
14158adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ∈ ℝ)
14259adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → 𝑧 ∈ ℝ)
143100ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → 𝑆 ∈ ℝ)
144 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ≤ 𝑧)
14552adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → 𝑈 ⊆ ℝ)
14646adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → 𝑈 ≠ ∅)
1472, 3jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
148 iccsupr 13349 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑈 ⊆ (𝐴[,]𝐵) ∧ 𝐴𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
149147, 7, 45, 148syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
150149simp3d 1144 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
151150adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥)
152127, 125sylibr 234 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑈) → 𝑧𝑈)
153 suprub 12094 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ 𝑧𝑈) → 𝑧 ≤ sup(𝑈, ℝ, < ))
154145, 146, 151, 152, 153syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧𝑈) → 𝑧 ≤ sup(𝑈, ℝ, < ))
155154, 1breqtrrdi 5137 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑈) → 𝑧𝑆)
156155ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → 𝑧𝑆)
157141, 142, 143, 144, 156letrd 11281 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ≤ 𝑆)
158157iftrued 4484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = (𝐷𝑗))
159138, 140, 1583eqtr4d 2778 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
160137, 159eqled 11227 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
16159adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → 𝑧 ∈ ℝ)
16258adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → (𝐷𝑗) ∈ ℝ)
163 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → ¬ (𝐷𝑗) ≤ 𝑧)
164161, 162ltnled 11271 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → (𝑧 < (𝐷𝑗) ↔ ¬ (𝐷𝑗) ≤ 𝑧))
165163, 164mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → 𝑧 < (𝐷𝑗))
166161, 162, 165ltled 11272 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → 𝑧 ≤ (𝐷𝑗))
167166adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → 𝑧 ≤ (𝐷𝑗))
168 iffalse 4485 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝐷𝑗) ≤ 𝑧 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = 𝑧)
169168ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = 𝑧)
170 iftrue 4482 . . . . . . . . . . . . . . . . . . . 20 ((𝐷𝑗) ≤ 𝑆 → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = (𝐷𝑗))
171170adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = (𝐷𝑗))
172169, 171breq12d 5108 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → (if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ↔ 𝑧 ≤ (𝐷𝑗)))
173167, 172mpbird 257 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
174155ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → 𝑧𝑆)
175168ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = 𝑧)
176 iffalse 4485 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝐷𝑗) ≤ 𝑆 → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = 𝑆)
177176adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) = 𝑆)
178175, 177breq12d 5108 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → (if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ↔ 𝑧𝑆))
179174, 178mpbird 257 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) ∧ ¬ (𝐷𝑗) ≤ 𝑆) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
180173, 179pm2.61dan 812 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷𝑗) ≤ 𝑧) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
181160, 180pm2.61dan 812 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
182 icossico 13323 . . . . . . . . . . . . . . 15 ((((𝐶𝑗) ∈ ℝ* ∧ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆) ∈ ℝ*) ∧ ((𝐶𝑗) ≤ (𝐶𝑗) ∧ if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) ≤ if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))
18378, 136, 81, 181, 182syl22anc 838 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))
184 volss 25481 . . . . . . . . . . . . . 14 ((((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)) ∈ dom vol ∧ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) ⊆ ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
18563, 135, 183, 184syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) ≤ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
18654, 55, 64, 134, 185sge0lempt 46570 . . . . . . . . . . . 12 ((𝜑𝑧𝑈) → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))))
18797, 133, 98, 186leadd1dd 11742 . . . . . . . . . . 11 ((𝜑𝑧𝑈) → ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) + 𝐴) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
18853, 99, 124, 132, 187letrd 11281 . . . . . . . . . 10 ((𝜑𝑧𝑈) → 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
189188ex 412 . . . . . . . . 9 (𝜑 → (𝑧𝑈𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
19050, 189ralrimi 3231 . . . . . . . 8 (𝜑 → ∀𝑧𝑈 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
191 suprleub 12099 . . . . . . . . 9 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥) ∧ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ∈ ℝ) → (sup(𝑈, ℝ, < ) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ↔ ∀𝑧𝑈 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
19252, 46, 150, 123, 191syl31anc 1375 . . . . . . . 8 (𝜑 → (sup(𝑈, ℝ, < ) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴) ↔ ∀𝑧𝑈 𝑧 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
193190, 192mpbird 257 . . . . . . 7 (𝜑 → sup(𝑈, ℝ, < ) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
19449, 193eqbrtrd 5117 . . . . . 6 (𝜑𝑆 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴))
195100, 2, 122lesubaddd 11725 . . . . . 6 (𝜑 → ((𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) ↔ 𝑆 ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))) + 𝐴)))
196194, 195mpbird 257 . . . . 5 (𝜑 → (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))))
19748, 196jca 511 . . . 4 (𝜑 → (𝑆 ∈ (𝐴[,]𝐵) ∧ (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))))
198 oveq1 7362 . . . . . 6 (𝑧 = 𝑆 → (𝑧𝐴) = (𝑆𝐴))
199 breq2 5099 . . . . . . . . . . 11 (𝑧 = 𝑆 → ((𝐷𝑗) ≤ 𝑧 ↔ (𝐷𝑗) ≤ 𝑆))
200 id 22 . . . . . . . . . . 11 (𝑧 = 𝑆𝑧 = 𝑆)
201199, 200ifbieq2d 4503 . . . . . . . . . 10 (𝑧 = 𝑆 → if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧) = if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))
202201oveq2d 7371 . . . . . . . . 9 (𝑧 = 𝑆 → ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)) = ((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))
203202fveq2d 6835 . . . . . . . 8 (𝑧 = 𝑆 → (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))) = (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))
204203mpteq2dv 5189 . . . . . . 7 (𝑧 = 𝑆 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))
205204fveq2d 6835 . . . . . 6 (𝑧 = 𝑆 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) = (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆))))))
206198, 205breq12d 5108 . . . . 5 (𝑧 = 𝑆 → ((𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧))))) ↔ (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))))
207206elrab 3643 . . . 4 (𝑆 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))} ↔ (𝑆 ∈ (𝐴[,]𝐵) ∧ (𝑆𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑆, (𝐷𝑗), 𝑆)))))))
208197, 207sylibr 234 . . 3 (𝜑𝑆 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))})
209208, 4eleqtrrdi 2844 . 2 (𝜑𝑆𝑈)
210209, 45, 1503jca 1128 1 (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  wss 3898  c0 4282  ifcif 4476   class class class wbr 5095  cmpt 5176  dom cdm 5621  wf 6485  cfv 6489  (class class class)co 7355  supcsup 9335  cr 11016  0cc0 11017   + caddc 11020  +∞cpnf 11154  *cxr 11156   < clt 11157  cle 11158  cmin 11355  cn 12136  [,)cico 13254  [,]cicc 13255  volcvol 25411  Σ^csumge0 46522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-xadd 13018  df-ioo 13256  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-rlim 15403  df-sum 15601  df-xmet 21293  df-met 21294  df-ovol 25412  df-vol 25413  df-sumge0 46523
This theorem is referenced by:  hoidmv1lelem3  46753
  Copyright terms: Public domain W3C validator