ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccat1st1st Unicode version

Theorem ccat1st1st 11116
Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if  W is the empty word. (Contributed by AV, 26-Mar-2022.)
Assertion
Ref Expression
ccat1st1st  |-  ( W  e. Word  V  ->  (
( W ++  <" ( W `  0 ) "> ) `  0
)  =  ( W `
 0 ) )

Proof of Theorem ccat1st1st
StepHypRef Expression
1 wrdfin 11035 . . . . 5  |-  ( W  e. Word  V  ->  W  e.  Fin )
2 fihasheq0 10960 . . . . 5  |-  ( W  e.  Fin  ->  (
( `  W )  =  0  <->  W  =  (/) ) )
31, 2syl 14 . . . 4  |-  ( W  e. Word  V  ->  (
( `  W )  =  0  <->  W  =  (/) ) )
43biimpa 296 . . 3  |-  ( ( W  e. Word  V  /\  ( `  W )  =  0 )  ->  W  =  (/) )
5 0ex 4179 . . . . . . . 8  |-  (/)  e.  _V
6 s1cl 11098 . . . . . . . 8  |-  ( (/)  e.  _V  ->  <" (/) ">  e. Word  _V )
75, 6ax-mp 5 . . . . . . 7  |-  <" (/) ">  e. Word  _V
8 ccatlid 11085 . . . . . . 7  |-  ( <" (/) ">  e. Word  _V 
->  ( (/) ++  <" (/) "> )  =  <" (/) "> )
97, 8ax-mp 5 . . . . . 6  |-  ( (/) ++  <" (/) "> )  =  <" (/) ">
109fveq1i 5590 . . . . 5  |-  ( (
(/) ++  <" (/) "> ) `  0 )  =  ( <" (/) "> `  0 )
11 s1fv 11103 . . . . . 6  |-  ( (/)  e.  _V  ->  ( <"
(/) "> `  0
)  =  (/) )
125, 11ax-mp 5 . . . . 5  |-  ( <" (/) "> `  0
)  =  (/)
1310, 12eqtri 2227 . . . 4  |-  ( (
(/) ++  <" (/) "> ) `  0 )  =  (/)
14 id 19 . . . . . 6  |-  ( W  =  (/)  ->  W  =  (/) )
15 fveq1 5588 . . . . . . . 8  |-  ( W  =  (/)  ->  ( W `
 0 )  =  ( (/) `  0 ) )
16 0fv 5625 . . . . . . . 8  |-  ( (/) `  0 )  =  (/)
1715, 16eqtrdi 2255 . . . . . . 7  |-  ( W  =  (/)  ->  ( W `
 0 )  =  (/) )
1817s1eqd 11097 . . . . . 6  |-  ( W  =  (/)  ->  <" ( W `  0 ) ">  =  <" (/) "> )
1914, 18oveq12d 5975 . . . . 5  |-  ( W  =  (/)  ->  ( W ++ 
<" ( W ` 
0 ) "> )  =  ( (/) ++  <" (/) "> ) )
2019fveq1d 5591 . . . 4  |-  ( W  =  (/)  ->  ( ( W ++  <" ( W `
 0 ) "> ) `  0
)  =  ( (
(/) ++  <" (/) "> ) `  0 )
)
2113, 20, 173eqtr4a 2265 . . 3  |-  ( W  =  (/)  ->  ( ( W ++  <" ( W `
 0 ) "> ) `  0
)  =  ( W `
 0 ) )
224, 21syl 14 . 2  |-  ( ( W  e. Word  V  /\  ( `  W )  =  0 )  ->  (
( W ++  <" ( W `  0 ) "> ) `  0
)  =  ( W `
 0 ) )
23 simpl 109 . . 3  |-  ( ( W  e. Word  V  /\  ( `  W )  =/=  0 )  ->  W  e. Word  V )
243necon3bid 2418 . . . . 5  |-  ( W  e. Word  V  ->  (
( `  W )  =/=  0  <->  W  =/=  (/) ) )
2524biimpa 296 . . . 4  |-  ( ( W  e. Word  V  /\  ( `  W )  =/=  0 )  ->  W  =/=  (/) )
26 fstwrdne 11054 . . . 4  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( W `  0 )  e.  V )
2725, 26syldan 282 . . 3  |-  ( ( W  e. Word  V  /\  ( `  W )  =/=  0 )  ->  ( W `  0 )  e.  V )
28 lennncl 11036 . . . . 5  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( `  W )  e.  NN )
2925, 28syldan 282 . . . 4  |-  ( ( W  e. Word  V  /\  ( `  W )  =/=  0 )  ->  ( `  W )  e.  NN )
30 lbfzo0 10327 . . . 4  |-  ( 0  e.  ( 0..^ ( `  W ) )  <->  ( `  W
)  e.  NN )
3129, 30sylibr 134 . . 3  |-  ( ( W  e. Word  V  /\  ( `  W )  =/=  0 )  ->  0  e.  ( 0..^ ( `  W
) ) )
32 ccats1val1g 11114 . . 3  |-  ( ( W  e. Word  V  /\  ( W `  0 )  e.  V  /\  0  e.  ( 0..^ ( `  W
) ) )  -> 
( ( W ++  <" ( W `  0
) "> ) `  0 )  =  ( W `  0
) )
3323, 27, 31, 32syl3anc 1250 . 2  |-  ( ( W  e. Word  V  /\  ( `  W )  =/=  0 )  ->  (
( W ++  <" ( W `  0 ) "> ) `  0
)  =  ( W `
 0 ) )
34 lencl 11020 . . . . 5  |-  ( W  e. Word  V  ->  ( `  W )  e.  NN0 )
3534nn0zd 9513 . . . 4  |-  ( W  e. Word  V  ->  ( `  W )  e.  ZZ )
36 0z 9403 . . . 4  |-  0  e.  ZZ
37 zdceq 9468 . . . 4  |-  ( ( ( `  W )  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( `  W )  =  0 )
3835, 36, 37sylancl 413 . . 3  |-  ( W  e. Word  V  -> DECID  ( `  W )  =  0 )
39 dcne 2388 . . 3  |-  (DECID  ( `  W
)  =  0  <->  (
( `  W )  =  0  \/  ( `  W
)  =/=  0 ) )
4038, 39sylib 122 . 2  |-  ( W  e. Word  V  ->  (
( `  W )  =  0  \/  ( `  W
)  =/=  0 ) )
4122, 33, 40mpjaodan 800 1  |-  ( W  e. Word  V  ->  (
( W ++  <" ( W `  0 ) "> ) `  0
)  =  ( W `
 0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2177    =/= wne 2377   _Vcvv 2773   (/)c0 3464   ` cfv 5280  (class class class)co 5957   Fincfn 6840   0cc0 7945   NNcn 9056   ZZcz 9392  ..^cfzo 10284  ♯chash 10942  Word cword 11016   ++ cconcat 11069   <"cs1 11092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-1o 6515  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285  df-ihash 10943  df-word 11017  df-concat 11070  df-s1 11093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator