| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ccat1st1st | GIF version | ||
| Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if 𝑊 is the empty word. (Contributed by AV, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| ccat1st1st | ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfin 11035 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → 𝑊 ∈ Fin) | |
| 2 | fihasheq0 10960 | . . . . 5 ⊢ (𝑊 ∈ Fin → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) |
| 4 | 3 | biimpa 296 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → 𝑊 = ∅) |
| 5 | 0ex 4179 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 6 | s1cl 11098 | . . . . . . . 8 ⊢ (∅ ∈ V → 〈“∅”〉 ∈ Word V) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ 〈“∅”〉 ∈ Word V |
| 8 | ccatlid 11085 | . . . . . . 7 ⊢ (〈“∅”〉 ∈ Word V → (∅ ++ 〈“∅”〉) = 〈“∅”〉) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ (∅ ++ 〈“∅”〉) = 〈“∅”〉 |
| 10 | 9 | fveq1i 5590 | . . . . 5 ⊢ ((∅ ++ 〈“∅”〉)‘0) = (〈“∅”〉‘0) |
| 11 | s1fv 11103 | . . . . . 6 ⊢ (∅ ∈ V → (〈“∅”〉‘0) = ∅) | |
| 12 | 5, 11 | ax-mp 5 | . . . . 5 ⊢ (〈“∅”〉‘0) = ∅ |
| 13 | 10, 12 | eqtri 2227 | . . . 4 ⊢ ((∅ ++ 〈“∅”〉)‘0) = ∅ |
| 14 | id 19 | . . . . . 6 ⊢ (𝑊 = ∅ → 𝑊 = ∅) | |
| 15 | fveq1 5588 | . . . . . . . 8 ⊢ (𝑊 = ∅ → (𝑊‘0) = (∅‘0)) | |
| 16 | 0fv 5625 | . . . . . . . 8 ⊢ (∅‘0) = ∅ | |
| 17 | 15, 16 | eqtrdi 2255 | . . . . . . 7 ⊢ (𝑊 = ∅ → (𝑊‘0) = ∅) |
| 18 | 17 | s1eqd 11097 | . . . . . 6 ⊢ (𝑊 = ∅ → 〈“(𝑊‘0)”〉 = 〈“∅”〉) |
| 19 | 14, 18 | oveq12d 5975 | . . . . 5 ⊢ (𝑊 = ∅ → (𝑊 ++ 〈“(𝑊‘0)”〉) = (∅ ++ 〈“∅”〉)) |
| 20 | 19 | fveq1d 5591 | . . . 4 ⊢ (𝑊 = ∅ → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = ((∅ ++ 〈“∅”〉)‘0)) |
| 21 | 13, 20, 17 | 3eqtr4a 2265 | . . 3 ⊢ (𝑊 = ∅ → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 22 | 4, 21 | syl 14 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 23 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 𝑊 ∈ Word 𝑉) | |
| 24 | 3 | necon3bid 2418 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅)) |
| 25 | 24 | biimpa 296 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 𝑊 ≠ ∅) |
| 26 | fstwrdne 11054 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊‘0) ∈ 𝑉) | |
| 27 | 25, 26 | syldan 282 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → (𝑊‘0) ∈ 𝑉) |
| 28 | lennncl 11036 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
| 29 | 25, 28 | syldan 282 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℕ) |
| 30 | lbfzo0 10327 | . . . 4 ⊢ (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ) | |
| 31 | 29, 30 | sylibr 134 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 0 ∈ (0..^(♯‘𝑊))) |
| 32 | ccats1val1g 11114 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) | |
| 33 | 23, 27, 31, 32 | syl3anc 1250 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 34 | lencl 11020 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 35 | 34 | nn0zd 9513 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
| 36 | 0z 9403 | . . . 4 ⊢ 0 ∈ ℤ | |
| 37 | zdceq 9468 | . . . 4 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (♯‘𝑊) = 0) | |
| 38 | 35, 36, 37 | sylancl 413 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → DECID (♯‘𝑊) = 0) |
| 39 | dcne 2388 | . . 3 ⊢ (DECID (♯‘𝑊) = 0 ↔ ((♯‘𝑊) = 0 ∨ (♯‘𝑊) ≠ 0)) | |
| 40 | 38, 39 | sylib 122 | . 2 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ∨ (♯‘𝑊) ≠ 0)) |
| 41 | 22, 33, 40 | mpjaodan 800 | 1 ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 Vcvv 2773 ∅c0 3464 ‘cfv 5280 (class class class)co 5957 Fincfn 6840 0cc0 7945 ℕcn 9056 ℤcz 9392 ..^cfzo 10284 ♯chash 10942 Word cword 11016 ++ cconcat 11069 〈“cs1 11092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-1o 6515 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 df-fzo 10285 df-ihash 10943 df-word 11017 df-concat 11070 df-s1 11093 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |