ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccat1st1st GIF version

Theorem ccat1st1st 11167
Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if 𝑊 is the empty word. (Contributed by AV, 26-Mar-2022.)
Assertion
Ref Expression
ccat1st1st (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))

Proof of Theorem ccat1st1st
StepHypRef Expression
1 wrdfin 11085 . . . . 5 (𝑊 ∈ Word 𝑉𝑊 ∈ Fin)
2 fihasheq0 11010 . . . . 5 (𝑊 ∈ Fin → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
31, 2syl 14 . . . 4 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
43biimpa 296 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → 𝑊 = ∅)
5 0ex 4210 . . . . . . . 8 ∅ ∈ V
6 s1cl 11149 . . . . . . . 8 (∅ ∈ V → ⟨“∅”⟩ ∈ Word V)
75, 6ax-mp 5 . . . . . . 7 ⟨“∅”⟩ ∈ Word V
8 ccatlid 11136 . . . . . . 7 (⟨“∅”⟩ ∈ Word V → (∅ ++ ⟨“∅”⟩) = ⟨“∅”⟩)
97, 8ax-mp 5 . . . . . 6 (∅ ++ ⟨“∅”⟩) = ⟨“∅”⟩
109fveq1i 5627 . . . . 5 ((∅ ++ ⟨“∅”⟩)‘0) = (⟨“∅”⟩‘0)
11 s1fv 11154 . . . . . 6 (∅ ∈ V → (⟨“∅”⟩‘0) = ∅)
125, 11ax-mp 5 . . . . 5 (⟨“∅”⟩‘0) = ∅
1310, 12eqtri 2250 . . . 4 ((∅ ++ ⟨“∅”⟩)‘0) = ∅
14 id 19 . . . . . 6 (𝑊 = ∅ → 𝑊 = ∅)
15 fveq1 5625 . . . . . . . 8 (𝑊 = ∅ → (𝑊‘0) = (∅‘0))
16 0fv 5664 . . . . . . . 8 (∅‘0) = ∅
1715, 16eqtrdi 2278 . . . . . . 7 (𝑊 = ∅ → (𝑊‘0) = ∅)
1817s1eqd 11148 . . . . . 6 (𝑊 = ∅ → ⟨“(𝑊‘0)”⟩ = ⟨“∅”⟩)
1914, 18oveq12d 6018 . . . . 5 (𝑊 = ∅ → (𝑊 ++ ⟨“(𝑊‘0)”⟩) = (∅ ++ ⟨“∅”⟩))
2019fveq1d 5628 . . . 4 (𝑊 = ∅ → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = ((∅ ++ ⟨“∅”⟩)‘0))
2113, 20, 173eqtr4a 2288 . . 3 (𝑊 = ∅ → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
224, 21syl 14 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
23 simpl 109 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 𝑊 ∈ Word 𝑉)
243necon3bid 2441 . . . . 5 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅))
2524biimpa 296 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 𝑊 ≠ ∅)
26 fstwrdne 11105 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊‘0) ∈ 𝑉)
2725, 26syldan 282 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → (𝑊‘0) ∈ 𝑉)
28 lennncl 11086 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
2925, 28syldan 282 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℕ)
30 lbfzo0 10377 . . . 4 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
3129, 30sylibr 134 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 0 ∈ (0..^(♯‘𝑊)))
32 ccats1val1g 11165 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
3323, 27, 31, 32syl3anc 1271 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
34 lencl 11070 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
3534nn0zd 9563 . . . 4 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
36 0z 9453 . . . 4 0 ∈ ℤ
37 zdceq 9518 . . . 4 (((♯‘𝑊) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (♯‘𝑊) = 0)
3835, 36, 37sylancl 413 . . 3 (𝑊 ∈ Word 𝑉DECID (♯‘𝑊) = 0)
39 dcne 2411 . . 3 (DECID (♯‘𝑊) = 0 ↔ ((♯‘𝑊) = 0 ∨ (♯‘𝑊) ≠ 0))
4038, 39sylib 122 . 2 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ∨ (♯‘𝑊) ≠ 0))
4122, 33, 40mpjaodan 803 1 (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wne 2400  Vcvv 2799  c0 3491  cfv 5317  (class class class)co 6000  Fincfn 6885  0cc0 7995  cn 9106  cz 9442  ..^cfzo 10334  chash 10992  Word cword 11066   ++ cconcat 11120  ⟨“cs1 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-concat 11121  df-s1 11144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator