| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ccat1st1st | GIF version | ||
| Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if 𝑊 is the empty word. (Contributed by AV, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| ccat1st1st | ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfin 11085 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → 𝑊 ∈ Fin) | |
| 2 | fihasheq0 11010 | . . . . 5 ⊢ (𝑊 ∈ Fin → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) |
| 4 | 3 | biimpa 296 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → 𝑊 = ∅) |
| 5 | 0ex 4210 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 6 | s1cl 11149 | . . . . . . . 8 ⊢ (∅ ∈ V → 〈“∅”〉 ∈ Word V) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ 〈“∅”〉 ∈ Word V |
| 8 | ccatlid 11136 | . . . . . . 7 ⊢ (〈“∅”〉 ∈ Word V → (∅ ++ 〈“∅”〉) = 〈“∅”〉) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ (∅ ++ 〈“∅”〉) = 〈“∅”〉 |
| 10 | 9 | fveq1i 5627 | . . . . 5 ⊢ ((∅ ++ 〈“∅”〉)‘0) = (〈“∅”〉‘0) |
| 11 | s1fv 11154 | . . . . . 6 ⊢ (∅ ∈ V → (〈“∅”〉‘0) = ∅) | |
| 12 | 5, 11 | ax-mp 5 | . . . . 5 ⊢ (〈“∅”〉‘0) = ∅ |
| 13 | 10, 12 | eqtri 2250 | . . . 4 ⊢ ((∅ ++ 〈“∅”〉)‘0) = ∅ |
| 14 | id 19 | . . . . . 6 ⊢ (𝑊 = ∅ → 𝑊 = ∅) | |
| 15 | fveq1 5625 | . . . . . . . 8 ⊢ (𝑊 = ∅ → (𝑊‘0) = (∅‘0)) | |
| 16 | 0fv 5664 | . . . . . . . 8 ⊢ (∅‘0) = ∅ | |
| 17 | 15, 16 | eqtrdi 2278 | . . . . . . 7 ⊢ (𝑊 = ∅ → (𝑊‘0) = ∅) |
| 18 | 17 | s1eqd 11148 | . . . . . 6 ⊢ (𝑊 = ∅ → 〈“(𝑊‘0)”〉 = 〈“∅”〉) |
| 19 | 14, 18 | oveq12d 6018 | . . . . 5 ⊢ (𝑊 = ∅ → (𝑊 ++ 〈“(𝑊‘0)”〉) = (∅ ++ 〈“∅”〉)) |
| 20 | 19 | fveq1d 5628 | . . . 4 ⊢ (𝑊 = ∅ → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = ((∅ ++ 〈“∅”〉)‘0)) |
| 21 | 13, 20, 17 | 3eqtr4a 2288 | . . 3 ⊢ (𝑊 = ∅ → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 22 | 4, 21 | syl 14 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 23 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 𝑊 ∈ Word 𝑉) | |
| 24 | 3 | necon3bid 2441 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅)) |
| 25 | 24 | biimpa 296 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 𝑊 ≠ ∅) |
| 26 | fstwrdne 11105 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊‘0) ∈ 𝑉) | |
| 27 | 25, 26 | syldan 282 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → (𝑊‘0) ∈ 𝑉) |
| 28 | lennncl 11086 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
| 29 | 25, 28 | syldan 282 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℕ) |
| 30 | lbfzo0 10377 | . . . 4 ⊢ (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ) | |
| 31 | 29, 30 | sylibr 134 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 0 ∈ (0..^(♯‘𝑊))) |
| 32 | ccats1val1g 11165 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) | |
| 33 | 23, 27, 31, 32 | syl3anc 1271 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 34 | lencl 11070 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 35 | 34 | nn0zd 9563 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
| 36 | 0z 9453 | . . . 4 ⊢ 0 ∈ ℤ | |
| 37 | zdceq 9518 | . . . 4 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (♯‘𝑊) = 0) | |
| 38 | 35, 36, 37 | sylancl 413 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → DECID (♯‘𝑊) = 0) |
| 39 | dcne 2411 | . . 3 ⊢ (DECID (♯‘𝑊) = 0 ↔ ((♯‘𝑊) = 0 ∨ (♯‘𝑊) ≠ 0)) | |
| 40 | 38, 39 | sylib 122 | . 2 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ∨ (♯‘𝑊) ≠ 0)) |
| 41 | 22, 33, 40 | mpjaodan 803 | 1 ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 Vcvv 2799 ∅c0 3491 ‘cfv 5317 (class class class)co 6000 Fincfn 6885 0cc0 7995 ℕcn 9106 ℤcz 9442 ..^cfzo 10334 ♯chash 10992 Word cword 11066 ++ cconcat 11120 〈“cs1 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-1o 6560 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 df-ihash 10993 df-word 11067 df-concat 11121 df-s1 11144 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |