ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyaddlem1 Unicode version

Theorem plyaddlem1 15067
Description: Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypotheses
Ref Expression
plyaddlem.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyaddlem.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyaddlem.m  |-  ( ph  ->  M  e.  NN0 )
plyaddlem.n  |-  ( ph  ->  N  e.  NN0 )
plyaddlem.a  |-  ( ph  ->  A : NN0 --> CC )
plyaddlem.b  |-  ( ph  ->  B : NN0 --> CC )
plyaddlem.a2  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
plyaddlem.b2  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyaddlem.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plyaddlem.g  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
plyaddlem1  |-  ( ph  ->  ( F  oF  +  G )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( ( A  oF  +  B ) `  k )  x.  (
z ^ k ) ) ) )
Distinct variable groups:    B, k    k, M    k, N    z, k, ph
Allowed substitution hints:    A( z, k)    B( z)    S( z, k)    F( z, k)    G( z, k)    M( z)    N( z)

Proof of Theorem plyaddlem1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 cnex 8020 . . . 4  |-  CC  e.  _V
21a1i 9 . . 3  |-  ( ph  ->  CC  e.  _V )
3 0zd 9355 . . . . . 6  |-  ( ph  ->  0  e.  ZZ )
4 plyaddlem.m . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
54nn0zd 9463 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
63, 5fzfigd 10540 . . . . 5  |-  ( ph  ->  ( 0 ... M
)  e.  Fin )
76adantr 276 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... M )  e. 
Fin )
8 plyaddlem.a . . . . . . 7  |-  ( ph  ->  A : NN0 --> CC )
98ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  A : NN0 --> CC )
10 elfznn0 10206 . . . . . . 7  |-  ( k  e.  ( 0 ... M )  ->  k  e.  NN0 )
1110adantl 277 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  k  e.  NN0 )
129, 11ffvelcdmd 5701 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  ( A `  k )  e.  CC )
13 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  z  e.  CC )
1413, 11expcld 10782 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
z ^ k )  e.  CC )
1512, 14mulcld 8064 . . . 4  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
167, 15fsumcl 11582 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  e.  CC )
17 plyaddlem.n . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
1817nn0zd 9463 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
193, 18fzfigd 10540 . . . . 5  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
2019adantr 276 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
21 plyaddlem.b . . . . . . 7  |-  ( ph  ->  B : NN0 --> CC )
2221ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  B : NN0 --> CC )
23 elfznn0 10206 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
2423adantl 277 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2522, 24ffvelcdmd 5701 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( B `  k )  e.  CC )
26 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  z  e.  CC )
2726, 24expcld 10782 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
z ^ k )  e.  CC )
2825, 27mulcld 8064 . . . 4  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
2920, 28fsumcl 11582 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) )  e.  CC )
30 plyaddlem.f . . 3  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
31 plyaddlem.g . . 3  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
322, 16, 29, 30, 31offval2 6155 . 2  |-  ( ph  ->  ( F  oF  +  G )  =  ( z  e.  CC  |->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k )  x.  (
z ^ k ) )  +  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) ) )
33 0zd 9355 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  0  e.  ZZ )
34 2zsupmax 11408 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  sup ( { M ,  N } ,  RR ,  <  )  =  if ( M  <_  N ,  N ,  M ) )
355, 18, 34syl2anc 411 . . . . . . . 8  |-  ( ph  ->  sup ( { M ,  N } ,  RR ,  <  )  =  if ( M  <_  N ,  N ,  M ) )
36 zmaxcl 11406 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  sup ( { M ,  N } ,  RR ,  <  )  e.  ZZ )
375, 18, 36syl2anc 411 . . . . . . . 8  |-  ( ph  ->  sup ( { M ,  N } ,  RR ,  <  )  e.  ZZ )
3835, 37eqeltrrd 2274 . . . . . . 7  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  ZZ )
3938adantr 276 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  if ( M  <_  N ,  N ,  M )  e.  ZZ )
4033, 39fzfigd 10540 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... if ( M  <_  N ,  N ,  M ) )  e. 
Fin )
41 elfznn0 10206 . . . . . 6  |-  ( k  e.  ( 0 ...
if ( M  <_  N ,  N ,  M ) )  -> 
k  e.  NN0 )
428adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  A : NN0
--> CC )
4342ffvelcdmda 5700 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
44 expcl 10666 . . . . . . . 8  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( z ^ k
)  e.  CC )
4544adantll 476 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
z ^ k )  e.  CC )
4643, 45mulcld 8064 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
4741, 46sylan2 286 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
4821adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  B : NN0
--> CC )
4948ffvelcdmda 5700 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  ( B `  k )  e.  CC )
5049, 45mulcld 8064 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
5141, 50sylan2 286 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
5240, 47, 51fsumadd 11588 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A `  k )  x.  ( z ^
k ) )  +  ( ( B `  k )  x.  (
z ^ k ) ) )  =  (
sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( A `
 k )  x.  ( z ^ k
) )  +  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
538ffnd 5411 . . . . . . . . . 10  |-  ( ph  ->  A  Fn  NN0 )
5421ffnd 5411 . . . . . . . . . 10  |-  ( ph  ->  B  Fn  NN0 )
55 nn0ex 9272 . . . . . . . . . . 11  |-  NN0  e.  _V
5655a1i 9 . . . . . . . . . 10  |-  ( ph  ->  NN0  e.  _V )
57 inidm 3373 . . . . . . . . . 10  |-  ( NN0 
i^i  NN0 )  =  NN0
58 eqidd 2197 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  =  ( A `  k ) )
59 eqidd 2197 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( B `  k )  =  ( B `  k ) )
608ffvelcdmda 5700 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
6121ffvelcdmda 5700 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( B `  k )  e.  CC )
6260, 61addcld 8063 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A `  k )  +  ( B `  k ) )  e.  CC )
6353, 54, 56, 56, 57, 58, 59, 62ofvalg 6149 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A  oF  +  B
) `  k )  =  ( ( A `
 k )  +  ( B `  k
) ) )
6463adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( A  oF  +  B ) `  k )  =  ( ( A `  k
)  +  ( B `
 k ) ) )
6564oveq1d 5940 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( ( A  oF  +  B ) `  k )  x.  (
z ^ k ) )  =  ( ( ( A `  k
)  +  ( B `
 k ) )  x.  ( z ^
k ) ) )
6643, 49, 45adddird 8069 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( ( A `  k )  +  ( B `  k ) )  x.  ( z ^ k ) )  =  ( ( ( A `  k )  x.  ( z ^
k ) )  +  ( ( B `  k )  x.  (
z ^ k ) ) ) )
6765, 66eqtrd 2229 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( ( A  oF  +  B ) `  k )  x.  (
z ^ k ) )  =  ( ( ( A `  k
)  x.  ( z ^ k ) )  +  ( ( B `
 k )  x.  ( z ^ k
) ) ) )
6841, 67sylan2 286 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  (
( ( A  oF  +  B ) `  k )  x.  (
z ^ k ) )  =  ( ( ( A `  k
)  x.  ( z ^ k ) )  +  ( ( B `
 k )  x.  ( z ^ k
) ) ) )
6968sumeq2dv 11550 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A  oF  +  B ) `  k
)  x.  ( z ^ k ) )  =  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A `  k )  x.  ( z ^
k ) )  +  ( ( B `  k )  x.  (
z ^ k ) ) ) )
70 zdcle 9419 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  <_  N )
715, 18, 70syl2anc 411 . . . . . . . . . 10  |-  ( ph  -> DECID  M  <_  N )
7218, 5, 71ifcldcd 3598 . . . . . . . . 9  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  ZZ )
734nn0red 9320 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  RR )
7417nn0red 9320 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  RR )
75 maxle1 11393 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  M  <_  sup ( { M ,  N } ,  RR ,  <  )
)
7673, 74, 75syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  M  <_  sup ( { M ,  N } ,  RR ,  <  )
)
7776, 35breqtrd 4060 . . . . . . . . 9  |-  ( ph  ->  M  <_  if ( M  <_  N ,  N ,  M ) )
78 eluz2 9624 . . . . . . . . 9  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  if ( M  <_  N ,  N ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  N ,  N ,  M ) ) )
795, 72, 77, 78syl3anbrc 1183 . . . . . . . 8  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  M ) )
80 fzss2 10156 . . . . . . . 8  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  M
)  ->  ( 0 ... M )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
8179, 80syl 14 . . . . . . 7  |-  ( ph  ->  ( 0 ... M
)  C_  ( 0 ... if ( M  <_  N ,  N ,  M ) ) )
8281adantr 276 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... M )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
8310, 46sylan2 286 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
84 eldifn 3287 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) )  ->  -.  k  e.  ( 0 ... M ) )
8584adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  ->  -.  k  e.  (
0 ... M ) )
86 eldifi 3286 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) )  ->  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
8786, 41syl 14 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) )  ->  k  e.  NN0 )
8887adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
k  e.  NN0 )
89 nn0uz 9653 . . . . . . . . . . . . . . . . . 18  |-  NN0  =  ( ZZ>= `  0 )
90 peano2nn0 9306 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  NN0  ->  ( M  +  1 )  e. 
NN0 )
914, 90syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( M  +  1 )  e.  NN0 )
9291, 89eleqtrdi 2289 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= ` 
0 ) )
93 uzsplit 10184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1
) ) ) )
9492, 93syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ZZ>= `  0 )  =  ( ( 0 ... ( ( M  +  1 )  - 
1 ) )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
9589, 94eqtrid 2241 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  NN0  =  ( ( 0 ... ( ( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
964nn0cnd 9321 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  CC )
97 ax-1cn 7989 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
98 pncan 8249 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
9996, 97, 98sylancl 413 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
10099oveq2d 5941 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 0 ... (
( M  +  1 )  -  1 ) )  =  ( 0 ... M ) )
101100uneq1d 3317 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 0 ... ( ( M  + 
1 )  -  1 ) )  u.  ( ZZ>=
`  ( M  + 
1 ) ) )  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
10295, 101eqtrd 2229 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  NN0  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
103102ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  ->  NN0  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
10488, 103eleqtrd 2275 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
k  e.  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
105 elun 3305 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) )  <->  ( k  e.  ( 0 ... M
)  \/  k  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
106104, 105sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( k  e.  ( 0 ... M )  \/  k  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
107106ord 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( -.  k  e.  ( 0 ... M
)  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
10885, 107mpd 13 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
k  e.  ( ZZ>= `  ( M  +  1
) ) )
1098ffund 5414 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  A )
110 ssun2 3328 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  ( M  +  1
) )  C_  (
( 0 ... (
( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1
) ) )
111110, 95sseqtrrid 3235 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  NN0 )
1128fdmd 5417 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  A  =  NN0 )
113111, 112sseqtrrd 3223 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  dom  A )
114 funfvima2 5798 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( M  + 
1 ) )  C_  dom  A )  ->  (
k  e.  ( ZZ>= `  ( M  +  1
) )  ->  ( A `  k )  e.  ( A " ( ZZ>=
`  ( M  + 
1 ) ) ) ) )
115109, 113, 114syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) ) )
116115ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( k  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) ) )
117108, 116mpd 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) )
118 plyaddlem.a2 . . . . . . . . . . 11  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
119118ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
120117, 119eleqtrd 2275 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A `  k
)  e.  { 0 } )
121 elsni 3641 . . . . . . . . 9  |-  ( ( A `  k )  e.  { 0 }  ->  ( A `  k )  =  0 )
122120, 121syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A `  k
)  =  0 )
123122oveq1d 5940 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( ( A `  k )  x.  (
z ^ k ) )  =  ( 0  x.  ( z ^
k ) ) )
12487, 45sylan2 286 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( z ^ k
)  e.  CC )
125124mul02d 8435 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( 0  x.  (
z ^ k ) )  =  0 )
126123, 125eqtrd 2229 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( ( A `  k )  x.  (
z ^ k ) )  =  0 )
127 elfzelz 10117 . . . . . . . . 9  |-  ( j  e.  ( 0 ...
if ( M  <_  N ,  N ,  M ) )  -> 
j  e.  ZZ )
128127adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  j  e.  ZZ )
129 0zd 9355 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  0  e.  ZZ )
1305ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  M  e.  ZZ )
131 fzdcel 10132 . . . . . . . 8  |-  ( ( j  e.  ZZ  /\  0  e.  ZZ  /\  M  e.  ZZ )  -> DECID  j  e.  (
0 ... M ) )
132128, 129, 130, 131syl3anc 1249 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  -> DECID  j  e.  (
0 ... M ) )
133132ralrimiva 2570 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  A. j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
)DECID  j  e.  ( 0 ... M ) )
13482, 83, 126, 133, 40fisumss 11574 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( A `  k
)  x.  ( z ^ k ) ) )
135 maxle2 11394 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  N  <_  sup ( { M ,  N } ,  RR ,  <  )
)
13673, 74, 135syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  N  <_  sup ( { M ,  N } ,  RR ,  <  )
)
137136, 35breqtrd 4060 . . . . . . . . 9  |-  ( ph  ->  N  <_  if ( M  <_  N ,  N ,  M ) )
138 eluz2 9624 . . . . . . . . 9  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  if ( M  <_  N ,  N ,  M )  e.  ZZ  /\  N  <_  if ( M  <_  N ,  N ,  M ) ) )
13918, 72, 137, 138syl3anbrc 1183 . . . . . . . 8  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  N ) )
140 fzss2 10156 . . . . . . . 8  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  N
)  ->  ( 0 ... N )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
141139, 140syl 14 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  C_  ( 0 ... if ( M  <_  N ,  N ,  M ) ) )
142141adantr 276 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
14323, 50sylan2 286 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
144 eldifn 3287 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) )  ->  -.  k  e.  ( 0 ... N ) )
145144adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  ->  -.  k  e.  (
0 ... N ) )
146 eldifi 3286 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) )  ->  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
147146, 41syl 14 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) )  ->  k  e.  NN0 )
148147adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
k  e.  NN0 )
149 peano2nn0 9306 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
15017, 149syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
151150, 89eleqtrdi 2289 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= ` 
0 ) )
152 uzsplit 10184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) ) )
153151, 152syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ZZ>= `  0 )  =  ( ( 0 ... ( ( N  +  1 )  - 
1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
15489, 153eqtrid 2241 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  NN0  =  ( ( 0 ... ( ( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
15517nn0cnd 9321 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  CC )
156 pncan 8249 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
157155, 97, 156sylancl 413 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
158157oveq2d 5941 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
159158uneq1d 3317 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 0 ... ( ( N  + 
1 )  -  1 ) )  u.  ( ZZ>=
`  ( N  + 
1 ) ) )  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
160154, 159eqtrd 2229 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
161160ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
162148, 161eleqtrd 2275 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
k  e.  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
163 elun 3305 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) )  <->  ( k  e.  ( 0 ... N
)  \/  k  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
164162, 163sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( k  e.  ( 0 ... N )  \/  k  e.  (
ZZ>= `  ( N  + 
1 ) ) ) )
165164ord 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( -.  k  e.  ( 0 ... N
)  ->  k  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
166145, 165mpd 13 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
k  e.  ( ZZ>= `  ( N  +  1
) ) )
16721ffund 5414 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  B )
168 ssun2 3328 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  ( N  +  1
) )  C_  (
( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) )
169168, 154sseqtrrid 3235 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  NN0 )
17021fdmd 5417 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  B  =  NN0 )
171169, 170sseqtrrd 3223 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  dom  B )
172 funfvima2 5798 . . . . . . . . . . . . 13  |-  ( ( Fun  B  /\  ( ZZ>=
`  ( N  + 
1 ) )  C_  dom  B )  ->  (
k  e.  ( ZZ>= `  ( N  +  1
) )  ->  ( B `  k )  e.  ( B " ( ZZ>=
`  ( N  + 
1 ) ) ) ) )
173167, 171, 172syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( B `  k
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) ) )
174173ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( k  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( B `  k
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) ) )
175166, 174mpd 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B `  k
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) )
176 plyaddlem.b2 . . . . . . . . . . 11  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
177176ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
178175, 177eleqtrd 2275 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B `  k
)  e.  { 0 } )
179 elsni 3641 . . . . . . . . 9  |-  ( ( B `  k )  e.  { 0 }  ->  ( B `  k )  =  0 )
180178, 179syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B `  k
)  =  0 )
181180oveq1d 5940 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( ( B `  k )  x.  (
z ^ k ) )  =  ( 0  x.  ( z ^
k ) ) )
182147, 45sylan2 286 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( z ^ k
)  e.  CC )
183182mul02d 8435 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( 0  x.  (
z ^ k ) )  =  0 )
184181, 183eqtrd 2229 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( ( B `  k )  x.  (
z ^ k ) )  =  0 )
18518ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  N  e.  ZZ )
186 fzdcel 10132 . . . . . . . 8  |-  ( ( j  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  j  e.  (
0 ... N ) )
187128, 129, 185, 186syl3anc 1249 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  -> DECID  j  e.  (
0 ... N ) )
188187ralrimiva 2570 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  A. j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
)DECID  j  e.  ( 0 ... N ) )
189142, 143, 184, 188, 40fisumss 11574 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( B `  k
)  x.  ( z ^ k ) ) )
190134, 189oveq12d 5943 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  +  sum_ k  e.  ( 0 ... N ) ( ( B `  k )  x.  (
z ^ k ) ) )  =  (
sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( A `
 k )  x.  ( z ^ k
) )  +  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
19152, 69, 1903eqtr4d 2239 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A  oF  +  B ) `  k
)  x.  ( z ^ k ) )  =  ( sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  +  sum_ k  e.  ( 0 ... N ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
192191mpteq2dva 4124 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( ( A  oF  +  B ) `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  (
sum_ k  e.  ( 0 ... M ) ( ( A `  k )  x.  (
z ^ k ) )  +  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) ) )
19332, 192eqtr4d 2232 1  |-  ( ph  ->  ( F  oF  +  G )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( ( A  oF  +  B ) `  k )  x.  (
z ^ k ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167   _Vcvv 2763    \ cdif 3154    u. cun 3155    C_ wss 3157   ifcif 3562   {csn 3623   {cpr 3624   class class class wbr 4034    |-> cmpt 4095   dom cdm 4664   "cima 4667   Fun wfun 5253   -->wf 5255   ` cfv 5259  (class class class)co 5925    oFcof 6137   Fincfn 6808   supcsup 7057   CCcc 7894   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    < clt 8078    <_ cle 8079    - cmin 8214   NN0cn0 9266   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100   ^cexp 10647   sum_csu 11535  Polycply 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  plyaddlem  15069
  Copyright terms: Public domain W3C validator