ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyaddlem1 Unicode version

Theorem plyaddlem1 14893
Description: Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypotheses
Ref Expression
plyaddlem.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyaddlem.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyaddlem.m  |-  ( ph  ->  M  e.  NN0 )
plyaddlem.n  |-  ( ph  ->  N  e.  NN0 )
plyaddlem.a  |-  ( ph  ->  A : NN0 --> CC )
plyaddlem.b  |-  ( ph  ->  B : NN0 --> CC )
plyaddlem.a2  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
plyaddlem.b2  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyaddlem.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plyaddlem.g  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
plyaddlem1  |-  ( ph  ->  ( F  oF  +  G )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( ( A  oF  +  B ) `  k )  x.  (
z ^ k ) ) ) )
Distinct variable groups:    B, k    k, M    k, N    z, k, ph
Allowed substitution hints:    A( z, k)    B( z)    S( z, k)    F( z, k)    G( z, k)    M( z)    N( z)

Proof of Theorem plyaddlem1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 cnex 7996 . . . 4  |-  CC  e.  _V
21a1i 9 . . 3  |-  ( ph  ->  CC  e.  _V )
3 0zd 9329 . . . . . 6  |-  ( ph  ->  0  e.  ZZ )
4 plyaddlem.m . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
54nn0zd 9437 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
63, 5fzfigd 10502 . . . . 5  |-  ( ph  ->  ( 0 ... M
)  e.  Fin )
76adantr 276 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... M )  e. 
Fin )
8 plyaddlem.a . . . . . . 7  |-  ( ph  ->  A : NN0 --> CC )
98ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  A : NN0 --> CC )
10 elfznn0 10180 . . . . . . 7  |-  ( k  e.  ( 0 ... M )  ->  k  e.  NN0 )
1110adantl 277 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  k  e.  NN0 )
129, 11ffvelcdmd 5694 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  ( A `  k )  e.  CC )
13 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  z  e.  CC )
1413, 11expcld 10744 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
z ^ k )  e.  CC )
1512, 14mulcld 8040 . . . 4  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
167, 15fsumcl 11543 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  e.  CC )
17 plyaddlem.n . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
1817nn0zd 9437 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
193, 18fzfigd 10502 . . . . 5  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
2019adantr 276 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
21 plyaddlem.b . . . . . . 7  |-  ( ph  ->  B : NN0 --> CC )
2221ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  B : NN0 --> CC )
23 elfznn0 10180 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
2423adantl 277 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2522, 24ffvelcdmd 5694 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( B `  k )  e.  CC )
26 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  z  e.  CC )
2726, 24expcld 10744 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
z ^ k )  e.  CC )
2825, 27mulcld 8040 . . . 4  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
2920, 28fsumcl 11543 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) )  e.  CC )
30 plyaddlem.f . . 3  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
31 plyaddlem.g . . 3  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
322, 16, 29, 30, 31offval2 6146 . 2  |-  ( ph  ->  ( F  oF  +  G )  =  ( z  e.  CC  |->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k )  x.  (
z ^ k ) )  +  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) ) )
33 0zd 9329 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  0  e.  ZZ )
34 2zsupmax 11369 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  sup ( { M ,  N } ,  RR ,  <  )  =  if ( M  <_  N ,  N ,  M ) )
355, 18, 34syl2anc 411 . . . . . . . 8  |-  ( ph  ->  sup ( { M ,  N } ,  RR ,  <  )  =  if ( M  <_  N ,  N ,  M ) )
36 zmaxcl 11368 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  sup ( { M ,  N } ,  RR ,  <  )  e.  ZZ )
375, 18, 36syl2anc 411 . . . . . . . 8  |-  ( ph  ->  sup ( { M ,  N } ,  RR ,  <  )  e.  ZZ )
3835, 37eqeltrrd 2271 . . . . . . 7  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  ZZ )
3938adantr 276 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  if ( M  <_  N ,  N ,  M )  e.  ZZ )
4033, 39fzfigd 10502 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... if ( M  <_  N ,  N ,  M ) )  e. 
Fin )
41 elfznn0 10180 . . . . . 6  |-  ( k  e.  ( 0 ...
if ( M  <_  N ,  N ,  M ) )  -> 
k  e.  NN0 )
428adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  A : NN0
--> CC )
4342ffvelcdmda 5693 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
44 expcl 10628 . . . . . . . 8  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( z ^ k
)  e.  CC )
4544adantll 476 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
z ^ k )  e.  CC )
4643, 45mulcld 8040 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
4741, 46sylan2 286 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
4821adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  B : NN0
--> CC )
4948ffvelcdmda 5693 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  ( B `  k )  e.  CC )
5049, 45mulcld 8040 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
5141, 50sylan2 286 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
5240, 47, 51fsumadd 11549 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A `  k )  x.  ( z ^
k ) )  +  ( ( B `  k )  x.  (
z ^ k ) ) )  =  (
sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( A `
 k )  x.  ( z ^ k
) )  +  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
538ffnd 5404 . . . . . . . . . 10  |-  ( ph  ->  A  Fn  NN0 )
5421ffnd 5404 . . . . . . . . . 10  |-  ( ph  ->  B  Fn  NN0 )
55 nn0ex 9246 . . . . . . . . . . 11  |-  NN0  e.  _V
5655a1i 9 . . . . . . . . . 10  |-  ( ph  ->  NN0  e.  _V )
57 inidm 3368 . . . . . . . . . 10  |-  ( NN0 
i^i  NN0 )  =  NN0
58 eqidd 2194 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  =  ( A `  k ) )
59 eqidd 2194 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( B `  k )  =  ( B `  k ) )
608ffvelcdmda 5693 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
6121ffvelcdmda 5693 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( B `  k )  e.  CC )
6260, 61addcld 8039 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A `  k )  +  ( B `  k ) )  e.  CC )
6353, 54, 56, 56, 57, 58, 59, 62ofvalg 6140 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A  oF  +  B
) `  k )  =  ( ( A `
 k )  +  ( B `  k
) ) )
6463adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( A  oF  +  B ) `  k )  =  ( ( A `  k
)  +  ( B `
 k ) ) )
6564oveq1d 5933 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( ( A  oF  +  B ) `  k )  x.  (
z ^ k ) )  =  ( ( ( A `  k
)  +  ( B `
 k ) )  x.  ( z ^
k ) ) )
6643, 49, 45adddird 8045 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( ( A `  k )  +  ( B `  k ) )  x.  ( z ^ k ) )  =  ( ( ( A `  k )  x.  ( z ^
k ) )  +  ( ( B `  k )  x.  (
z ^ k ) ) ) )
6765, 66eqtrd 2226 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( ( A  oF  +  B ) `  k )  x.  (
z ^ k ) )  =  ( ( ( A `  k
)  x.  ( z ^ k ) )  +  ( ( B `
 k )  x.  ( z ^ k
) ) ) )
6841, 67sylan2 286 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  (
( ( A  oF  +  B ) `  k )  x.  (
z ^ k ) )  =  ( ( ( A `  k
)  x.  ( z ^ k ) )  +  ( ( B `
 k )  x.  ( z ^ k
) ) ) )
6968sumeq2dv 11511 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A  oF  +  B ) `  k
)  x.  ( z ^ k ) )  =  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A `  k )  x.  ( z ^
k ) )  +  ( ( B `  k )  x.  (
z ^ k ) ) ) )
70 zdcle 9393 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  <_  N )
715, 18, 70syl2anc 411 . . . . . . . . . 10  |-  ( ph  -> DECID  M  <_  N )
7218, 5, 71ifcldcd 3593 . . . . . . . . 9  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  ZZ )
734nn0red 9294 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  RR )
7417nn0red 9294 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  RR )
75 maxle1 11355 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  M  <_  sup ( { M ,  N } ,  RR ,  <  )
)
7673, 74, 75syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  M  <_  sup ( { M ,  N } ,  RR ,  <  )
)
7776, 35breqtrd 4055 . . . . . . . . 9  |-  ( ph  ->  M  <_  if ( M  <_  N ,  N ,  M ) )
78 eluz2 9598 . . . . . . . . 9  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  if ( M  <_  N ,  N ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  N ,  N ,  M ) ) )
795, 72, 77, 78syl3anbrc 1183 . . . . . . . 8  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  M ) )
80 fzss2 10130 . . . . . . . 8  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  M
)  ->  ( 0 ... M )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
8179, 80syl 14 . . . . . . 7  |-  ( ph  ->  ( 0 ... M
)  C_  ( 0 ... if ( M  <_  N ,  N ,  M ) ) )
8281adantr 276 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... M )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
8310, 46sylan2 286 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
84 eldifn 3282 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) )  ->  -.  k  e.  ( 0 ... M ) )
8584adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  ->  -.  k  e.  (
0 ... M ) )
86 eldifi 3281 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) )  ->  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
8786, 41syl 14 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) )  ->  k  e.  NN0 )
8887adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
k  e.  NN0 )
89 nn0uz 9627 . . . . . . . . . . . . . . . . . 18  |-  NN0  =  ( ZZ>= `  0 )
90 peano2nn0 9280 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  NN0  ->  ( M  +  1 )  e. 
NN0 )
914, 90syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( M  +  1 )  e.  NN0 )
9291, 89eleqtrdi 2286 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= ` 
0 ) )
93 uzsplit 10158 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1
) ) ) )
9492, 93syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ZZ>= `  0 )  =  ( ( 0 ... ( ( M  +  1 )  - 
1 ) )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
9589, 94eqtrid 2238 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  NN0  =  ( ( 0 ... ( ( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
964nn0cnd 9295 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  CC )
97 ax-1cn 7965 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
98 pncan 8225 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
9996, 97, 98sylancl 413 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
10099oveq2d 5934 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 0 ... (
( M  +  1 )  -  1 ) )  =  ( 0 ... M ) )
101100uneq1d 3312 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 0 ... ( ( M  + 
1 )  -  1 ) )  u.  ( ZZ>=
`  ( M  + 
1 ) ) )  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
10295, 101eqtrd 2226 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  NN0  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
103102ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  ->  NN0  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
10488, 103eleqtrd 2272 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
k  e.  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
105 elun 3300 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) )  <->  ( k  e.  ( 0 ... M
)  \/  k  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
106104, 105sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( k  e.  ( 0 ... M )  \/  k  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
107106ord 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( -.  k  e.  ( 0 ... M
)  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
10885, 107mpd 13 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
k  e.  ( ZZ>= `  ( M  +  1
) ) )
1098ffund 5407 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  A )
110 ssun2 3323 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  ( M  +  1
) )  C_  (
( 0 ... (
( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1
) ) )
111110, 95sseqtrrid 3230 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  NN0 )
1128fdmd 5410 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  A  =  NN0 )
113111, 112sseqtrrd 3218 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  dom  A )
114 funfvima2 5791 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( M  + 
1 ) )  C_  dom  A )  ->  (
k  e.  ( ZZ>= `  ( M  +  1
) )  ->  ( A `  k )  e.  ( A " ( ZZ>=
`  ( M  + 
1 ) ) ) ) )
115109, 113, 114syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) ) )
116115ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( k  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) ) )
117108, 116mpd 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) )
118 plyaddlem.a2 . . . . . . . . . . 11  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
119118ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
120117, 119eleqtrd 2272 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A `  k
)  e.  { 0 } )
121 elsni 3636 . . . . . . . . 9  |-  ( ( A `  k )  e.  { 0 }  ->  ( A `  k )  =  0 )
122120, 121syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( A `  k
)  =  0 )
123122oveq1d 5933 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( ( A `  k )  x.  (
z ^ k ) )  =  ( 0  x.  ( z ^
k ) ) )
12487, 45sylan2 286 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( z ^ k
)  e.  CC )
125124mul02d 8411 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( 0  x.  (
z ^ k ) )  =  0 )
126123, 125eqtrd 2226 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... M
) ) )  -> 
( ( A `  k )  x.  (
z ^ k ) )  =  0 )
127 elfzelz 10091 . . . . . . . . 9  |-  ( j  e.  ( 0 ...
if ( M  <_  N ,  N ,  M ) )  -> 
j  e.  ZZ )
128127adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  j  e.  ZZ )
129 0zd 9329 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  0  e.  ZZ )
1305ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  M  e.  ZZ )
131 fzdcel 10106 . . . . . . . 8  |-  ( ( j  e.  ZZ  /\  0  e.  ZZ  /\  M  e.  ZZ )  -> DECID  j  e.  (
0 ... M ) )
132128, 129, 130, 131syl3anc 1249 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  -> DECID  j  e.  (
0 ... M ) )
133132ralrimiva 2567 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  A. j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
)DECID  j  e.  ( 0 ... M ) )
13482, 83, 126, 133, 40fisumss 11535 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( A `  k
)  x.  ( z ^ k ) ) )
135 maxle2 11356 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  N  <_  sup ( { M ,  N } ,  RR ,  <  )
)
13673, 74, 135syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  N  <_  sup ( { M ,  N } ,  RR ,  <  )
)
137136, 35breqtrd 4055 . . . . . . . . 9  |-  ( ph  ->  N  <_  if ( M  <_  N ,  N ,  M ) )
138 eluz2 9598 . . . . . . . . 9  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  if ( M  <_  N ,  N ,  M )  e.  ZZ  /\  N  <_  if ( M  <_  N ,  N ,  M ) ) )
13918, 72, 137, 138syl3anbrc 1183 . . . . . . . 8  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  N ) )
140 fzss2 10130 . . . . . . . 8  |-  ( if ( M  <_  N ,  N ,  M )  e.  ( ZZ>= `  N
)  ->  ( 0 ... N )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
141139, 140syl 14 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  C_  ( 0 ... if ( M  <_  N ,  N ,  M ) ) )
142141adantr 276 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  C_  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
14323, 50sylan2 286 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
144 eldifn 3282 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) )  ->  -.  k  e.  ( 0 ... N ) )
145144adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  ->  -.  k  e.  (
0 ... N ) )
146 eldifi 3281 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) )  ->  k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )
147146, 41syl 14 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ( 0 ... if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) )  ->  k  e.  NN0 )
148147adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
k  e.  NN0 )
149 peano2nn0 9280 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
15017, 149syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
151150, 89eleqtrdi 2286 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= ` 
0 ) )
152 uzsplit 10158 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) ) )
153151, 152syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ZZ>= `  0 )  =  ( ( 0 ... ( ( N  +  1 )  - 
1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
15489, 153eqtrid 2238 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  NN0  =  ( ( 0 ... ( ( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
15517nn0cnd 9295 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  CC )
156 pncan 8225 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
157155, 97, 156sylancl 413 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
158157oveq2d 5934 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
159158uneq1d 3312 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 0 ... ( ( N  + 
1 )  -  1 ) )  u.  ( ZZ>=
`  ( N  + 
1 ) ) )  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
160154, 159eqtrd 2226 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
161160ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
162148, 161eleqtrd 2272 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
k  e.  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
163 elun 3300 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) )  <->  ( k  e.  ( 0 ... N
)  \/  k  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
164162, 163sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( k  e.  ( 0 ... N )  \/  k  e.  (
ZZ>= `  ( N  + 
1 ) ) ) )
165164ord 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( -.  k  e.  ( 0 ... N
)  ->  k  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
166145, 165mpd 13 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
k  e.  ( ZZ>= `  ( N  +  1
) ) )
16721ffund 5407 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  B )
168 ssun2 3323 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  ( N  +  1
) )  C_  (
( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) )
169168, 154sseqtrrid 3230 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  NN0 )
17021fdmd 5410 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  B  =  NN0 )
171169, 170sseqtrrd 3218 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  dom  B )
172 funfvima2 5791 . . . . . . . . . . . . 13  |-  ( ( Fun  B  /\  ( ZZ>=
`  ( N  + 
1 ) )  C_  dom  B )  ->  (
k  e.  ( ZZ>= `  ( N  +  1
) )  ->  ( B `  k )  e.  ( B " ( ZZ>=
`  ( N  + 
1 ) ) ) ) )
173167, 171, 172syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( B `  k
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) ) )
174173ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( k  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( B `  k
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) ) )
175166, 174mpd 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B `  k
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) )
176 plyaddlem.b2 . . . . . . . . . . 11  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
177176ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
178175, 177eleqtrd 2272 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B `  k
)  e.  { 0 } )
179 elsni 3636 . . . . . . . . 9  |-  ( ( B `  k )  e.  { 0 }  ->  ( B `  k )  =  0 )
180178, 179syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( B `  k
)  =  0 )
181180oveq1d 5933 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( ( B `  k )  x.  (
z ^ k ) )  =  ( 0  x.  ( z ^
k ) ) )
182147, 45sylan2 286 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( z ^ k
)  e.  CC )
183182mul02d 8411 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( 0  x.  (
z ^ k ) )  =  0 )
184181, 183eqtrd 2226 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ...
if ( M  <_  N ,  N ,  M ) )  \ 
( 0 ... N
) ) )  -> 
( ( B `  k )  x.  (
z ^ k ) )  =  0 )
18518ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  ->  N  e.  ZZ )
186 fzdcel 10106 . . . . . . . 8  |-  ( ( j  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  j  e.  (
0 ... N ) )
187128, 129, 185, 186syl3anc 1249 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) )  -> DECID  j  e.  (
0 ... N ) )
188187ralrimiva 2567 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  A. j  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
)DECID  j  e.  ( 0 ... N ) )
189142, 143, 184, 188, 40fisumss 11535 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( B `  k
)  x.  ( z ^ k ) ) )
190134, 189oveq12d 5936 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  +  sum_ k  e.  ( 0 ... N ) ( ( B `  k )  x.  (
z ^ k ) ) )  =  (
sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( A `
 k )  x.  ( z ^ k
) )  +  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
19152, 69, 1903eqtr4d 2236 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M )
) ( ( ( A  oF  +  B ) `  k
)  x.  ( z ^ k ) )  =  ( sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  +  sum_ k  e.  ( 0 ... N ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
192191mpteq2dva 4119 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( ( A  oF  +  B ) `  k )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  (
sum_ k  e.  ( 0 ... M ) ( ( A `  k )  x.  (
z ^ k ) )  +  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) ) )
19332, 192eqtr4d 2229 1  |-  ( ph  ->  ( F  oF  +  G )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... if ( M  <_  N ,  N ,  M ) ) ( ( ( A  oF  +  B ) `  k )  x.  (
z ^ k ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164   _Vcvv 2760    \ cdif 3150    u. cun 3151    C_ wss 3153   ifcif 3557   {csn 3618   {cpr 3619   class class class wbr 4029    |-> cmpt 4090   dom cdm 4659   "cima 4662   Fun wfun 5248   -->wf 5250   ` cfv 5254  (class class class)co 5918    oFcof 6128   Fincfn 6794   supcsup 7041   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074   ^cexp 10609   sum_csu 11496  Polycply 14874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  plyaddlem  14895
  Copyright terms: Public domain W3C validator