ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycoeid3 Unicode version

Theorem plycoeid3 15396
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
Hypotheses
Ref Expression
plycoeid3.d  |-  ( ph  ->  D  e.  NN0 )
plycoeid3.a  |-  ( ph  ->  A : NN0 --> CC )
plycoeid3.z  |-  ( ph  ->  ( A " ( ZZ>=
`  ( D  + 
1 ) ) )  =  { 0 } )
plycoeid3.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plycoeid3.m  |-  ( ph  ->  M  e.  ( ZZ>= `  D ) )
plycoeid3.x  |-  ( ph  ->  X  e.  CC )
Assertion
Ref Expression
plycoeid3  |-  ( ph  ->  ( F `  X
)  =  sum_ j  e.  ( 0 ... M
) ( ( A `
 j )  x.  ( X ^ j
) ) )
Distinct variable groups:    A, j, z    A, k, z    D, k, z    j, M    k, M    j, X, z    k, X
Allowed substitution hints:    ph( z, j, k)    D( j)    F( z, j, k)    M( z)

Proof of Theorem plycoeid3
Dummy variables  r  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycoeid3.f . . . . . 6  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
21fveq1d 5605 . . . . 5  |-  ( ph  ->  ( F `  X
)  =  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( z ^ k ) ) ) `  X ) )
3 eqid 2209 . . . . . 6  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( z ^ k ) ) )
4 oveq1 5981 . . . . . . . 8  |-  ( z  =  X  ->  (
z ^ k )  =  ( X ^
k ) )
54oveq2d 5990 . . . . . . 7  |-  ( z  =  X  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( X ^ k
) ) )
65sumeq2sdv 11847 . . . . . 6  |-  ( z  =  X  ->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( X ^ k ) ) )
7 plycoeid3.x . . . . . 6  |-  ( ph  ->  X  e.  CC )
8 fveq2 5603 . . . . . . . . 9  |-  ( q  =  k  ->  ( A `  q )  =  ( A `  k ) )
9 oveq2 5982 . . . . . . . . 9  |-  ( q  =  k  ->  ( X ^ q )  =  ( X ^ k
) )
108, 9oveq12d 5992 . . . . . . . 8  |-  ( q  =  k  ->  (
( A `  q
)  x.  ( X ^ q ) )  =  ( ( A `
 k )  x.  ( X ^ k
) ) )
1110cbvsumv 11838 . . . . . . 7  |-  sum_ q  e.  ( 0 ... D
) ( ( A `
 q )  x.  ( X ^ q
) )  =  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( X ^ k ) )
12 0zd 9426 . . . . . . . . 9  |-  ( ph  ->  0  e.  ZZ )
13 plycoeid3.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  NN0 )
1413nn0zd 9535 . . . . . . . . 9  |-  ( ph  ->  D  e.  ZZ )
1512, 14fzfigd 10620 . . . . . . . 8  |-  ( ph  ->  ( 0 ... D
)  e.  Fin )
16 plycoeid3.a . . . . . . . . . . 11  |-  ( ph  ->  A : NN0 --> CC )
1716adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  A : NN0 --> CC )
18 elfznn0 10278 . . . . . . . . . . 11  |-  ( q  e.  ( 0 ... D )  ->  q  e.  NN0 )
1918adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  q  e.  NN0 )
2017, 19ffvelcdmd 5744 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  ( A `  q )  e.  CC )
217adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  X  e.  CC )
2221, 19expcld 10862 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  ( X ^ q )  e.  CC )
2320, 22mulcld 8135 . . . . . . . 8  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  (
( A `  q
)  x.  ( X ^ q ) )  e.  CC )
2415, 23fsumcl 11877 . . . . . . 7  |-  ( ph  -> 
sum_ q  e.  ( 0 ... D ) ( ( A `  q )  x.  ( X ^ q ) )  e.  CC )
2511, 24eqeltrrid 2297 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... D ) ( ( A `  k )  x.  ( X ^ k ) )  e.  CC )
263, 6, 7, 25fvmptd3 5701 . . . . 5  |-  ( ph  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D ) ( ( A `  k )  x.  (
z ^ k ) ) ) `  X
)  =  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( X ^ k
) ) )
272, 26eqtrd 2242 . . . 4  |-  ( ph  ->  ( F `  X
)  =  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( X ^ k
) ) )
28 fveq2 5603 . . . . . 6  |-  ( k  =  r  ->  ( A `  k )  =  ( A `  r ) )
29 oveq2 5982 . . . . . 6  |-  ( k  =  r  ->  ( X ^ k )  =  ( X ^ r
) )
3028, 29oveq12d 5992 . . . . 5  |-  ( k  =  r  ->  (
( A `  k
)  x.  ( X ^ k ) )  =  ( ( A `
 r )  x.  ( X ^ r
) ) )
3130cbvsumv 11838 . . . 4  |-  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( X ^ k
) )  =  sum_ r  e.  ( 0 ... D ) ( ( A `  r
)  x.  ( X ^ r ) )
3227, 31eqtrdi 2258 . . 3  |-  ( ph  ->  ( F `  X
)  =  sum_ r  e.  ( 0 ... D
) ( ( A `
 r )  x.  ( X ^ r
) ) )
33 plycoeid3.m . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  D ) )
34 fzss2 10228 . . . . 5  |-  ( M  e.  ( ZZ>= `  D
)  ->  ( 0 ... D )  C_  ( 0 ... M
) )
3533, 34syl 14 . . . 4  |-  ( ph  ->  ( 0 ... D
)  C_  ( 0 ... M ) )
3616adantr 276 . . . . . 6  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  A : NN0 --> CC )
37 elfznn0 10278 . . . . . . 7  |-  ( r  e.  ( 0 ... D )  ->  r  e.  NN0 )
3837adantl 277 . . . . . 6  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  r  e.  NN0 )
3936, 38ffvelcdmd 5744 . . . . 5  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  ( A `  r )  e.  CC )
407adantr 276 . . . . . 6  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  X  e.  CC )
4140, 38expcld 10862 . . . . 5  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  ( X ^ r )  e.  CC )
4239, 41mulcld 8135 . . . 4  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  (
( A `  r
)  x.  ( X ^ r ) )  e.  CC )
43 eldifn 3307 . . . . . . . . . 10  |-  ( r  e.  ( ( 0 ... M )  \ 
( 0 ... D
) )  ->  -.  r  e.  ( 0 ... D ) )
4443adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  -.  r  e.  ( 0 ... D
) )
45 eldifi 3306 . . . . . . . . . . . . . 14  |-  ( r  e.  ( ( 0 ... M )  \ 
( 0 ... D
) )  ->  r  e.  ( 0 ... M
) )
4645adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  ( 0 ... M
) )
47 elfznn0 10278 . . . . . . . . . . . . 13  |-  ( r  e.  ( 0 ... M )  ->  r  e.  NN0 )
4846, 47syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  NN0 )
49 nn0split 10300 . . . . . . . . . . . . . 14  |-  ( D  e.  NN0  ->  NN0  =  ( ( 0 ... D )  u.  ( ZZ>=
`  ( D  + 
1 ) ) ) )
5013, 49syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  NN0  =  ( ( 0 ... D )  u.  ( ZZ>= `  ( D  +  1 ) ) ) )
5150adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  NN0  =  ( ( 0 ... D
)  u.  ( ZZ>= `  ( D  +  1
) ) ) )
5248, 51eleqtrd 2288 . . . . . . . . . . 11  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  ( ( 0 ... D )  u.  ( ZZ>=
`  ( D  + 
1 ) ) ) )
53 elun 3325 . . . . . . . . . . 11  |-  ( r  e.  ( ( 0 ... D )  u.  ( ZZ>= `  ( D  +  1 ) ) )  <->  ( r  e.  ( 0 ... D
)  \/  r  e.  ( ZZ>= `  ( D  +  1 ) ) ) )
5452, 53sylib 122 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( r  e.  ( 0 ... D
)  \/  r  e.  ( ZZ>= `  ( D  +  1 ) ) ) )
5554orcomd 733 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( r  e.  ( ZZ>= `  ( D  +  1 ) )  \/  r  e.  ( 0 ... D ) ) )
5644, 55ecased 1364 . . . . . . . 8  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  ( ZZ>= `  ( D  +  1 ) ) )
57 plycoeid3.z . . . . . . . . . . 11  |-  ( ph  ->  ( A " ( ZZ>=
`  ( D  + 
1 ) ) )  =  { 0 } )
58 eqimss 3258 . . . . . . . . . . 11  |-  ( ( A " ( ZZ>= `  ( D  +  1
) ) )  =  { 0 }  ->  ( A " ( ZZ>= `  ( D  +  1
) ) )  C_  { 0 } )
5957, 58syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( A " ( ZZ>=
`  ( D  + 
1 ) ) ) 
C_  { 0 } )
6016ffund 5453 . . . . . . . . . . 11  |-  ( ph  ->  Fun  A )
61 peano2nn0 9377 . . . . . . . . . . . . . . . 16  |-  ( D  e.  NN0  ->  ( D  +  1 )  e. 
NN0 )
6213, 61syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D  +  1 )  e.  NN0 )
63 nn0uz 9725 . . . . . . . . . . . . . . 15  |-  NN0  =  ( ZZ>= `  0 )
6462, 63eleqtrdi 2302 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  +  1 )  e.  ( ZZ>= ` 
0 ) )
65 uzss 9711 . . . . . . . . . . . . . 14  |-  ( ( D  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= `  ( D  +  1
) )  C_  ( ZZ>=
`  0 ) )
6664, 65syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  ( D  +  1 ) ) 
C_  ( ZZ>= `  0
) )
6766, 63sseqtrrdi 3253 . . . . . . . . . . . 12  |-  ( ph  ->  ( ZZ>= `  ( D  +  1 ) ) 
C_  NN0 )
6816fdmd 5456 . . . . . . . . . . . 12  |-  ( ph  ->  dom  A  =  NN0 )
6967, 68sseqtrrd 3243 . . . . . . . . . . 11  |-  ( ph  ->  ( ZZ>= `  ( D  +  1 ) ) 
C_  dom  A )
70 funimass4 5657 . . . . . . . . . . 11  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( D  + 
1 ) )  C_  dom  A )  ->  (
( A " ( ZZ>=
`  ( D  + 
1 ) ) ) 
C_  { 0 }  <->  A. r  e.  ( ZZ>=
`  ( D  + 
1 ) ) ( A `  r )  e.  { 0 } ) )
7160, 69, 70syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( ( A "
( ZZ>= `  ( D  +  1 ) ) )  C_  { 0 } 
<-> 
A. r  e.  (
ZZ>= `  ( D  + 
1 ) ) ( A `  r )  e.  { 0 } ) )
7259, 71mpbid 147 . . . . . . . . 9  |-  ( ph  ->  A. r  e.  (
ZZ>= `  ( D  + 
1 ) ) ( A `  r )  e.  { 0 } )
7372r19.21bi 2598 . . . . . . . 8  |-  ( (
ph  /\  r  e.  ( ZZ>= `  ( D  +  1 ) ) )  ->  ( A `  r )  e.  {
0 } )
7456, 73syldan 282 . . . . . . 7  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( A `  r )  e.  {
0 } )
75 elsni 3664 . . . . . . 7  |-  ( ( A `  r )  e.  { 0 }  ->  ( A `  r )  =  0 )
7674, 75syl 14 . . . . . 6  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( A `  r )  =  0 )
7776oveq1d 5989 . . . . 5  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( ( A `  r )  x.  ( X ^ r
) )  =  ( 0  x.  ( X ^ r ) ) )
787adantr 276 . . . . . . 7  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  X  e.  CC )
7978, 48expcld 10862 . . . . . 6  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( X ^ r )  e.  CC )
8079mul02d 8506 . . . . 5  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( 0  x.  ( X ^
r ) )  =  0 )
8177, 80eqtrd 2242 . . . 4  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( ( A `  r )  x.  ( X ^ r
) )  =  0 )
82 elfzelz 10189 . . . . . . 7  |-  ( p  e.  ( 0 ... M )  ->  p  e.  ZZ )
8382adantl 277 . . . . . 6  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  ->  p  e.  ZZ )
84 0zd 9426 . . . . . 6  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  ->  0  e.  ZZ )
8514adantr 276 . . . . . 6  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  ->  D  e.  ZZ )
86 fzdcel 10204 . . . . . 6  |-  ( ( p  e.  ZZ  /\  0  e.  ZZ  /\  D  e.  ZZ )  -> DECID  p  e.  (
0 ... D ) )
8783, 84, 85, 86syl3anc 1252 . . . . 5  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  -> DECID  p  e.  (
0 ... D ) )
8887ralrimiva 2583 . . . 4  |-  ( ph  ->  A. p  e.  ( 0 ... M )DECID  p  e.  ( 0 ... D ) )
89 eluzelz 9699 . . . . . 6  |-  ( M  e.  ( ZZ>= `  D
)  ->  M  e.  ZZ )
9033, 89syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
9112, 90fzfigd 10620 . . . 4  |-  ( ph  ->  ( 0 ... M
)  e.  Fin )
9235, 42, 81, 88, 91fisumss 11869 . . 3  |-  ( ph  -> 
sum_ r  e.  ( 0 ... D ) ( ( A `  r )  x.  ( X ^ r ) )  =  sum_ r  e.  ( 0 ... M ) ( ( A `  r )  x.  ( X ^ r ) ) )
9332, 92eqtrd 2242 . 2  |-  ( ph  ->  ( F `  X
)  =  sum_ r  e.  ( 0 ... M
) ( ( A `
 r )  x.  ( X ^ r
) ) )
94 fveq2 5603 . . . 4  |-  ( r  =  j  ->  ( A `  r )  =  ( A `  j ) )
95 oveq2 5982 . . . 4  |-  ( r  =  j  ->  ( X ^ r )  =  ( X ^ j
) )
9694, 95oveq12d 5992 . . 3  |-  ( r  =  j  ->  (
( A `  r
)  x.  ( X ^ r ) )  =  ( ( A `
 j )  x.  ( X ^ j
) ) )
9796cbvsumv 11838 . 2  |-  sum_ r  e.  ( 0 ... M
) ( ( A `
 r )  x.  ( X ^ r
) )  =  sum_ j  e.  ( 0 ... M ) ( ( A `  j
)  x.  ( X ^ j ) )
9893, 97eqtrdi 2258 1  |-  ( ph  ->  ( F `  X
)  =  sum_ j  e.  ( 0 ... M
) ( ( A `
 j )  x.  ( X ^ j
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 712  DECID wdc 838    = wceq 1375    e. wcel 2180   A.wral 2488    \ cdif 3174    u. cun 3175    C_ wss 3177   {csn 3646    |-> cmpt 4124   dom cdm 4696   "cima 4699   Fun wfun 5288   -->wf 5290   ` cfv 5294  (class class class)co 5974   CCcc 7965   0cc0 7967   1c1 7968    + caddc 7970    x. cmul 7972   NN0cn0 9337   ZZcz 9414   ZZ>=cuz 9690   ...cfz 10172   ^cexp 10727   sum_csu 11830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831
This theorem is referenced by:  dvply2g  15405
  Copyright terms: Public domain W3C validator