ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycoeid3 Unicode version

Theorem plycoeid3 15439
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
Hypotheses
Ref Expression
plycoeid3.d  |-  ( ph  ->  D  e.  NN0 )
plycoeid3.a  |-  ( ph  ->  A : NN0 --> CC )
plycoeid3.z  |-  ( ph  ->  ( A " ( ZZ>=
`  ( D  + 
1 ) ) )  =  { 0 } )
plycoeid3.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plycoeid3.m  |-  ( ph  ->  M  e.  ( ZZ>= `  D ) )
plycoeid3.x  |-  ( ph  ->  X  e.  CC )
Assertion
Ref Expression
plycoeid3  |-  ( ph  ->  ( F `  X
)  =  sum_ j  e.  ( 0 ... M
) ( ( A `
 j )  x.  ( X ^ j
) ) )
Distinct variable groups:    A, j, z    A, k, z    D, k, z    j, M    k, M    j, X, z    k, X
Allowed substitution hints:    ph( z, j, k)    D( j)    F( z, j, k)    M( z)

Proof of Theorem plycoeid3
Dummy variables  r  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycoeid3.f . . . . . 6  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
21fveq1d 5631 . . . . 5  |-  ( ph  ->  ( F `  X
)  =  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( z ^ k ) ) ) `  X ) )
3 eqid 2229 . . . . . 6  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( z ^ k ) ) )
4 oveq1 6014 . . . . . . . 8  |-  ( z  =  X  ->  (
z ^ k )  =  ( X ^
k ) )
54oveq2d 6023 . . . . . . 7  |-  ( z  =  X  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( X ^ k
) ) )
65sumeq2sdv 11889 . . . . . 6  |-  ( z  =  X  ->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( X ^ k ) ) )
7 plycoeid3.x . . . . . 6  |-  ( ph  ->  X  e.  CC )
8 fveq2 5629 . . . . . . . . 9  |-  ( q  =  k  ->  ( A `  q )  =  ( A `  k ) )
9 oveq2 6015 . . . . . . . . 9  |-  ( q  =  k  ->  ( X ^ q )  =  ( X ^ k
) )
108, 9oveq12d 6025 . . . . . . . 8  |-  ( q  =  k  ->  (
( A `  q
)  x.  ( X ^ q ) )  =  ( ( A `
 k )  x.  ( X ^ k
) ) )
1110cbvsumv 11880 . . . . . . 7  |-  sum_ q  e.  ( 0 ... D
) ( ( A `
 q )  x.  ( X ^ q
) )  =  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( X ^ k ) )
12 0zd 9466 . . . . . . . . 9  |-  ( ph  ->  0  e.  ZZ )
13 plycoeid3.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  NN0 )
1413nn0zd 9575 . . . . . . . . 9  |-  ( ph  ->  D  e.  ZZ )
1512, 14fzfigd 10661 . . . . . . . 8  |-  ( ph  ->  ( 0 ... D
)  e.  Fin )
16 plycoeid3.a . . . . . . . . . . 11  |-  ( ph  ->  A : NN0 --> CC )
1716adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  A : NN0 --> CC )
18 elfznn0 10318 . . . . . . . . . . 11  |-  ( q  e.  ( 0 ... D )  ->  q  e.  NN0 )
1918adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  q  e.  NN0 )
2017, 19ffvelcdmd 5773 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  ( A `  q )  e.  CC )
217adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  X  e.  CC )
2221, 19expcld 10903 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  ( X ^ q )  e.  CC )
2320, 22mulcld 8175 . . . . . . . 8  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  (
( A `  q
)  x.  ( X ^ q ) )  e.  CC )
2415, 23fsumcl 11919 . . . . . . 7  |-  ( ph  -> 
sum_ q  e.  ( 0 ... D ) ( ( A `  q )  x.  ( X ^ q ) )  e.  CC )
2511, 24eqeltrrid 2317 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... D ) ( ( A `  k )  x.  ( X ^ k ) )  e.  CC )
263, 6, 7, 25fvmptd3 5730 . . . . 5  |-  ( ph  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D ) ( ( A `  k )  x.  (
z ^ k ) ) ) `  X
)  =  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( X ^ k
) ) )
272, 26eqtrd 2262 . . . 4  |-  ( ph  ->  ( F `  X
)  =  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( X ^ k
) ) )
28 fveq2 5629 . . . . . 6  |-  ( k  =  r  ->  ( A `  k )  =  ( A `  r ) )
29 oveq2 6015 . . . . . 6  |-  ( k  =  r  ->  ( X ^ k )  =  ( X ^ r
) )
3028, 29oveq12d 6025 . . . . 5  |-  ( k  =  r  ->  (
( A `  k
)  x.  ( X ^ k ) )  =  ( ( A `
 r )  x.  ( X ^ r
) ) )
3130cbvsumv 11880 . . . 4  |-  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( X ^ k
) )  =  sum_ r  e.  ( 0 ... D ) ( ( A `  r
)  x.  ( X ^ r ) )
3227, 31eqtrdi 2278 . . 3  |-  ( ph  ->  ( F `  X
)  =  sum_ r  e.  ( 0 ... D
) ( ( A `
 r )  x.  ( X ^ r
) ) )
33 plycoeid3.m . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  D ) )
34 fzss2 10268 . . . . 5  |-  ( M  e.  ( ZZ>= `  D
)  ->  ( 0 ... D )  C_  ( 0 ... M
) )
3533, 34syl 14 . . . 4  |-  ( ph  ->  ( 0 ... D
)  C_  ( 0 ... M ) )
3616adantr 276 . . . . . 6  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  A : NN0 --> CC )
37 elfznn0 10318 . . . . . . 7  |-  ( r  e.  ( 0 ... D )  ->  r  e.  NN0 )
3837adantl 277 . . . . . 6  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  r  e.  NN0 )
3936, 38ffvelcdmd 5773 . . . . 5  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  ( A `  r )  e.  CC )
407adantr 276 . . . . . 6  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  X  e.  CC )
4140, 38expcld 10903 . . . . 5  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  ( X ^ r )  e.  CC )
4239, 41mulcld 8175 . . . 4  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  (
( A `  r
)  x.  ( X ^ r ) )  e.  CC )
43 eldifn 3327 . . . . . . . . . 10  |-  ( r  e.  ( ( 0 ... M )  \ 
( 0 ... D
) )  ->  -.  r  e.  ( 0 ... D ) )
4443adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  -.  r  e.  ( 0 ... D
) )
45 eldifi 3326 . . . . . . . . . . . . . 14  |-  ( r  e.  ( ( 0 ... M )  \ 
( 0 ... D
) )  ->  r  e.  ( 0 ... M
) )
4645adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  ( 0 ... M
) )
47 elfznn0 10318 . . . . . . . . . . . . 13  |-  ( r  e.  ( 0 ... M )  ->  r  e.  NN0 )
4846, 47syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  NN0 )
49 nn0split 10340 . . . . . . . . . . . . . 14  |-  ( D  e.  NN0  ->  NN0  =  ( ( 0 ... D )  u.  ( ZZ>=
`  ( D  + 
1 ) ) ) )
5013, 49syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  NN0  =  ( ( 0 ... D )  u.  ( ZZ>= `  ( D  +  1 ) ) ) )
5150adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  NN0  =  ( ( 0 ... D
)  u.  ( ZZ>= `  ( D  +  1
) ) ) )
5248, 51eleqtrd 2308 . . . . . . . . . . 11  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  ( ( 0 ... D )  u.  ( ZZ>=
`  ( D  + 
1 ) ) ) )
53 elun 3345 . . . . . . . . . . 11  |-  ( r  e.  ( ( 0 ... D )  u.  ( ZZ>= `  ( D  +  1 ) ) )  <->  ( r  e.  ( 0 ... D
)  \/  r  e.  ( ZZ>= `  ( D  +  1 ) ) ) )
5452, 53sylib 122 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( r  e.  ( 0 ... D
)  \/  r  e.  ( ZZ>= `  ( D  +  1 ) ) ) )
5554orcomd 734 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( r  e.  ( ZZ>= `  ( D  +  1 ) )  \/  r  e.  ( 0 ... D ) ) )
5644, 55ecased 1383 . . . . . . . 8  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  ( ZZ>= `  ( D  +  1 ) ) )
57 plycoeid3.z . . . . . . . . . . 11  |-  ( ph  ->  ( A " ( ZZ>=
`  ( D  + 
1 ) ) )  =  { 0 } )
58 eqimss 3278 . . . . . . . . . . 11  |-  ( ( A " ( ZZ>= `  ( D  +  1
) ) )  =  { 0 }  ->  ( A " ( ZZ>= `  ( D  +  1
) ) )  C_  { 0 } )
5957, 58syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( A " ( ZZ>=
`  ( D  + 
1 ) ) ) 
C_  { 0 } )
6016ffund 5477 . . . . . . . . . . 11  |-  ( ph  ->  Fun  A )
61 peano2nn0 9417 . . . . . . . . . . . . . . . 16  |-  ( D  e.  NN0  ->  ( D  +  1 )  e. 
NN0 )
6213, 61syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D  +  1 )  e.  NN0 )
63 nn0uz 9765 . . . . . . . . . . . . . . 15  |-  NN0  =  ( ZZ>= `  0 )
6462, 63eleqtrdi 2322 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  +  1 )  e.  ( ZZ>= ` 
0 ) )
65 uzss 9751 . . . . . . . . . . . . . 14  |-  ( ( D  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= `  ( D  +  1
) )  C_  ( ZZ>=
`  0 ) )
6664, 65syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  ( D  +  1 ) ) 
C_  ( ZZ>= `  0
) )
6766, 63sseqtrrdi 3273 . . . . . . . . . . . 12  |-  ( ph  ->  ( ZZ>= `  ( D  +  1 ) ) 
C_  NN0 )
6816fdmd 5480 . . . . . . . . . . . 12  |-  ( ph  ->  dom  A  =  NN0 )
6967, 68sseqtrrd 3263 . . . . . . . . . . 11  |-  ( ph  ->  ( ZZ>= `  ( D  +  1 ) ) 
C_  dom  A )
70 funimass4 5686 . . . . . . . . . . 11  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( D  + 
1 ) )  C_  dom  A )  ->  (
( A " ( ZZ>=
`  ( D  + 
1 ) ) ) 
C_  { 0 }  <->  A. r  e.  ( ZZ>=
`  ( D  + 
1 ) ) ( A `  r )  e.  { 0 } ) )
7160, 69, 70syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( ( A "
( ZZ>= `  ( D  +  1 ) ) )  C_  { 0 } 
<-> 
A. r  e.  (
ZZ>= `  ( D  + 
1 ) ) ( A `  r )  e.  { 0 } ) )
7259, 71mpbid 147 . . . . . . . . 9  |-  ( ph  ->  A. r  e.  (
ZZ>= `  ( D  + 
1 ) ) ( A `  r )  e.  { 0 } )
7372r19.21bi 2618 . . . . . . . 8  |-  ( (
ph  /\  r  e.  ( ZZ>= `  ( D  +  1 ) ) )  ->  ( A `  r )  e.  {
0 } )
7456, 73syldan 282 . . . . . . 7  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( A `  r )  e.  {
0 } )
75 elsni 3684 . . . . . . 7  |-  ( ( A `  r )  e.  { 0 }  ->  ( A `  r )  =  0 )
7674, 75syl 14 . . . . . 6  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( A `  r )  =  0 )
7776oveq1d 6022 . . . . 5  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( ( A `  r )  x.  ( X ^ r
) )  =  ( 0  x.  ( X ^ r ) ) )
787adantr 276 . . . . . . 7  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  X  e.  CC )
7978, 48expcld 10903 . . . . . 6  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( X ^ r )  e.  CC )
8079mul02d 8546 . . . . 5  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( 0  x.  ( X ^
r ) )  =  0 )
8177, 80eqtrd 2262 . . . 4  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( ( A `  r )  x.  ( X ^ r
) )  =  0 )
82 elfzelz 10229 . . . . . . 7  |-  ( p  e.  ( 0 ... M )  ->  p  e.  ZZ )
8382adantl 277 . . . . . 6  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  ->  p  e.  ZZ )
84 0zd 9466 . . . . . 6  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  ->  0  e.  ZZ )
8514adantr 276 . . . . . 6  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  ->  D  e.  ZZ )
86 fzdcel 10244 . . . . . 6  |-  ( ( p  e.  ZZ  /\  0  e.  ZZ  /\  D  e.  ZZ )  -> DECID  p  e.  (
0 ... D ) )
8783, 84, 85, 86syl3anc 1271 . . . . 5  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  -> DECID  p  e.  (
0 ... D ) )
8887ralrimiva 2603 . . . 4  |-  ( ph  ->  A. p  e.  ( 0 ... M )DECID  p  e.  ( 0 ... D ) )
89 eluzelz 9739 . . . . . 6  |-  ( M  e.  ( ZZ>= `  D
)  ->  M  e.  ZZ )
9033, 89syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
9112, 90fzfigd 10661 . . . 4  |-  ( ph  ->  ( 0 ... M
)  e.  Fin )
9235, 42, 81, 88, 91fisumss 11911 . . 3  |-  ( ph  -> 
sum_ r  e.  ( 0 ... D ) ( ( A `  r )  x.  ( X ^ r ) )  =  sum_ r  e.  ( 0 ... M ) ( ( A `  r )  x.  ( X ^ r ) ) )
9332, 92eqtrd 2262 . 2  |-  ( ph  ->  ( F `  X
)  =  sum_ r  e.  ( 0 ... M
) ( ( A `
 r )  x.  ( X ^ r
) ) )
94 fveq2 5629 . . . 4  |-  ( r  =  j  ->  ( A `  r )  =  ( A `  j ) )
95 oveq2 6015 . . . 4  |-  ( r  =  j  ->  ( X ^ r )  =  ( X ^ j
) )
9694, 95oveq12d 6025 . . 3  |-  ( r  =  j  ->  (
( A `  r
)  x.  ( X ^ r ) )  =  ( ( A `
 j )  x.  ( X ^ j
) ) )
9796cbvsumv 11880 . 2  |-  sum_ r  e.  ( 0 ... M
) ( ( A `
 r )  x.  ( X ^ r
) )  =  sum_ j  e.  ( 0 ... M ) ( ( A `  j
)  x.  ( X ^ j ) )
9893, 97eqtrdi 2278 1  |-  ( ph  ->  ( F `  X
)  =  sum_ j  e.  ( 0 ... M
) ( ( A `
 j )  x.  ( X ^ j
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508    \ cdif 3194    u. cun 3195    C_ wss 3197   {csn 3666    |-> cmpt 4145   dom cdm 4719   "cima 4722   Fun wfun 5312   -->wf 5314   ` cfv 5318  (class class class)co 6007   CCcc 8005   0cc0 8007   1c1 8008    + caddc 8010    x. cmul 8012   NN0cn0 9377   ZZcz 9454   ZZ>=cuz 9730   ...cfz 10212   ^cexp 10768   sum_csu 11872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873
This theorem is referenced by:  dvply2g  15448
  Copyright terms: Public domain W3C validator