ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycoeid3 Unicode version

Theorem plycoeid3 15273
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
Hypotheses
Ref Expression
plycoeid3.d  |-  ( ph  ->  D  e.  NN0 )
plycoeid3.a  |-  ( ph  ->  A : NN0 --> CC )
plycoeid3.z  |-  ( ph  ->  ( A " ( ZZ>=
`  ( D  + 
1 ) ) )  =  { 0 } )
plycoeid3.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plycoeid3.m  |-  ( ph  ->  M  e.  ( ZZ>= `  D ) )
plycoeid3.x  |-  ( ph  ->  X  e.  CC )
Assertion
Ref Expression
plycoeid3  |-  ( ph  ->  ( F `  X
)  =  sum_ j  e.  ( 0 ... M
) ( ( A `
 j )  x.  ( X ^ j
) ) )
Distinct variable groups:    A, j, z    A, k, z    D, k, z    j, M    k, M    j, X, z    k, X
Allowed substitution hints:    ph( z, j, k)    D( j)    F( z, j, k)    M( z)

Proof of Theorem plycoeid3
Dummy variables  r  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycoeid3.f . . . . . 6  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
21fveq1d 5585 . . . . 5  |-  ( ph  ->  ( F `  X
)  =  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( z ^ k ) ) ) `  X ) )
3 eqid 2206 . . . . . 6  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( z ^ k ) ) )
4 oveq1 5958 . . . . . . . 8  |-  ( z  =  X  ->  (
z ^ k )  =  ( X ^
k ) )
54oveq2d 5967 . . . . . . 7  |-  ( z  =  X  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( X ^ k
) ) )
65sumeq2sdv 11725 . . . . . 6  |-  ( z  =  X  ->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( X ^ k ) ) )
7 plycoeid3.x . . . . . 6  |-  ( ph  ->  X  e.  CC )
8 fveq2 5583 . . . . . . . . 9  |-  ( q  =  k  ->  ( A `  q )  =  ( A `  k ) )
9 oveq2 5959 . . . . . . . . 9  |-  ( q  =  k  ->  ( X ^ q )  =  ( X ^ k
) )
108, 9oveq12d 5969 . . . . . . . 8  |-  ( q  =  k  ->  (
( A `  q
)  x.  ( X ^ q ) )  =  ( ( A `
 k )  x.  ( X ^ k
) ) )
1110cbvsumv 11716 . . . . . . 7  |-  sum_ q  e.  ( 0 ... D
) ( ( A `
 q )  x.  ( X ^ q
) )  =  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( X ^ k ) )
12 0zd 9391 . . . . . . . . 9  |-  ( ph  ->  0  e.  ZZ )
13 plycoeid3.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  NN0 )
1413nn0zd 9500 . . . . . . . . 9  |-  ( ph  ->  D  e.  ZZ )
1512, 14fzfigd 10583 . . . . . . . 8  |-  ( ph  ->  ( 0 ... D
)  e.  Fin )
16 plycoeid3.a . . . . . . . . . . 11  |-  ( ph  ->  A : NN0 --> CC )
1716adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  A : NN0 --> CC )
18 elfznn0 10243 . . . . . . . . . . 11  |-  ( q  e.  ( 0 ... D )  ->  q  e.  NN0 )
1918adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  q  e.  NN0 )
2017, 19ffvelcdmd 5723 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  ( A `  q )  e.  CC )
217adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  X  e.  CC )
2221, 19expcld 10825 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  ( X ^ q )  e.  CC )
2320, 22mulcld 8100 . . . . . . . 8  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  (
( A `  q
)  x.  ( X ^ q ) )  e.  CC )
2415, 23fsumcl 11755 . . . . . . 7  |-  ( ph  -> 
sum_ q  e.  ( 0 ... D ) ( ( A `  q )  x.  ( X ^ q ) )  e.  CC )
2511, 24eqeltrrid 2294 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... D ) ( ( A `  k )  x.  ( X ^ k ) )  e.  CC )
263, 6, 7, 25fvmptd3 5680 . . . . 5  |-  ( ph  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D ) ( ( A `  k )  x.  (
z ^ k ) ) ) `  X
)  =  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( X ^ k
) ) )
272, 26eqtrd 2239 . . . 4  |-  ( ph  ->  ( F `  X
)  =  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( X ^ k
) ) )
28 fveq2 5583 . . . . . 6  |-  ( k  =  r  ->  ( A `  k )  =  ( A `  r ) )
29 oveq2 5959 . . . . . 6  |-  ( k  =  r  ->  ( X ^ k )  =  ( X ^ r
) )
3028, 29oveq12d 5969 . . . . 5  |-  ( k  =  r  ->  (
( A `  k
)  x.  ( X ^ k ) )  =  ( ( A `
 r )  x.  ( X ^ r
) ) )
3130cbvsumv 11716 . . . 4  |-  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( X ^ k
) )  =  sum_ r  e.  ( 0 ... D ) ( ( A `  r
)  x.  ( X ^ r ) )
3227, 31eqtrdi 2255 . . 3  |-  ( ph  ->  ( F `  X
)  =  sum_ r  e.  ( 0 ... D
) ( ( A `
 r )  x.  ( X ^ r
) ) )
33 plycoeid3.m . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  D ) )
34 fzss2 10193 . . . . 5  |-  ( M  e.  ( ZZ>= `  D
)  ->  ( 0 ... D )  C_  ( 0 ... M
) )
3533, 34syl 14 . . . 4  |-  ( ph  ->  ( 0 ... D
)  C_  ( 0 ... M ) )
3616adantr 276 . . . . . 6  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  A : NN0 --> CC )
37 elfznn0 10243 . . . . . . 7  |-  ( r  e.  ( 0 ... D )  ->  r  e.  NN0 )
3837adantl 277 . . . . . 6  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  r  e.  NN0 )
3936, 38ffvelcdmd 5723 . . . . 5  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  ( A `  r )  e.  CC )
407adantr 276 . . . . . 6  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  X  e.  CC )
4140, 38expcld 10825 . . . . 5  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  ( X ^ r )  e.  CC )
4239, 41mulcld 8100 . . . 4  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  (
( A `  r
)  x.  ( X ^ r ) )  e.  CC )
43 eldifn 3297 . . . . . . . . . 10  |-  ( r  e.  ( ( 0 ... M )  \ 
( 0 ... D
) )  ->  -.  r  e.  ( 0 ... D ) )
4443adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  -.  r  e.  ( 0 ... D
) )
45 eldifi 3296 . . . . . . . . . . . . . 14  |-  ( r  e.  ( ( 0 ... M )  \ 
( 0 ... D
) )  ->  r  e.  ( 0 ... M
) )
4645adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  ( 0 ... M
) )
47 elfznn0 10243 . . . . . . . . . . . . 13  |-  ( r  e.  ( 0 ... M )  ->  r  e.  NN0 )
4846, 47syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  NN0 )
49 nn0split 10265 . . . . . . . . . . . . . 14  |-  ( D  e.  NN0  ->  NN0  =  ( ( 0 ... D )  u.  ( ZZ>=
`  ( D  + 
1 ) ) ) )
5013, 49syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  NN0  =  ( ( 0 ... D )  u.  ( ZZ>= `  ( D  +  1 ) ) ) )
5150adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  NN0  =  ( ( 0 ... D
)  u.  ( ZZ>= `  ( D  +  1
) ) ) )
5248, 51eleqtrd 2285 . . . . . . . . . . 11  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  ( ( 0 ... D )  u.  ( ZZ>=
`  ( D  + 
1 ) ) ) )
53 elun 3315 . . . . . . . . . . 11  |-  ( r  e.  ( ( 0 ... D )  u.  ( ZZ>= `  ( D  +  1 ) ) )  <->  ( r  e.  ( 0 ... D
)  \/  r  e.  ( ZZ>= `  ( D  +  1 ) ) ) )
5452, 53sylib 122 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( r  e.  ( 0 ... D
)  \/  r  e.  ( ZZ>= `  ( D  +  1 ) ) ) )
5554orcomd 731 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( r  e.  ( ZZ>= `  ( D  +  1 ) )  \/  r  e.  ( 0 ... D ) ) )
5644, 55ecased 1362 . . . . . . . 8  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  ( ZZ>= `  ( D  +  1 ) ) )
57 plycoeid3.z . . . . . . . . . . 11  |-  ( ph  ->  ( A " ( ZZ>=
`  ( D  + 
1 ) ) )  =  { 0 } )
58 eqimss 3248 . . . . . . . . . . 11  |-  ( ( A " ( ZZ>= `  ( D  +  1
) ) )  =  { 0 }  ->  ( A " ( ZZ>= `  ( D  +  1
) ) )  C_  { 0 } )
5957, 58syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( A " ( ZZ>=
`  ( D  + 
1 ) ) ) 
C_  { 0 } )
6016ffund 5435 . . . . . . . . . . 11  |-  ( ph  ->  Fun  A )
61 peano2nn0 9342 . . . . . . . . . . . . . . . 16  |-  ( D  e.  NN0  ->  ( D  +  1 )  e. 
NN0 )
6213, 61syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D  +  1 )  e.  NN0 )
63 nn0uz 9690 . . . . . . . . . . . . . . 15  |-  NN0  =  ( ZZ>= `  0 )
6462, 63eleqtrdi 2299 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  +  1 )  e.  ( ZZ>= ` 
0 ) )
65 uzss 9676 . . . . . . . . . . . . . 14  |-  ( ( D  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= `  ( D  +  1
) )  C_  ( ZZ>=
`  0 ) )
6664, 65syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  ( D  +  1 ) ) 
C_  ( ZZ>= `  0
) )
6766, 63sseqtrrdi 3243 . . . . . . . . . . . 12  |-  ( ph  ->  ( ZZ>= `  ( D  +  1 ) ) 
C_  NN0 )
6816fdmd 5438 . . . . . . . . . . . 12  |-  ( ph  ->  dom  A  =  NN0 )
6967, 68sseqtrrd 3233 . . . . . . . . . . 11  |-  ( ph  ->  ( ZZ>= `  ( D  +  1 ) ) 
C_  dom  A )
70 funimass4 5636 . . . . . . . . . . 11  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( D  + 
1 ) )  C_  dom  A )  ->  (
( A " ( ZZ>=
`  ( D  + 
1 ) ) ) 
C_  { 0 }  <->  A. r  e.  ( ZZ>=
`  ( D  + 
1 ) ) ( A `  r )  e.  { 0 } ) )
7160, 69, 70syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( ( A "
( ZZ>= `  ( D  +  1 ) ) )  C_  { 0 } 
<-> 
A. r  e.  (
ZZ>= `  ( D  + 
1 ) ) ( A `  r )  e.  { 0 } ) )
7259, 71mpbid 147 . . . . . . . . 9  |-  ( ph  ->  A. r  e.  (
ZZ>= `  ( D  + 
1 ) ) ( A `  r )  e.  { 0 } )
7372r19.21bi 2595 . . . . . . . 8  |-  ( (
ph  /\  r  e.  ( ZZ>= `  ( D  +  1 ) ) )  ->  ( A `  r )  e.  {
0 } )
7456, 73syldan 282 . . . . . . 7  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( A `  r )  e.  {
0 } )
75 elsni 3652 . . . . . . 7  |-  ( ( A `  r )  e.  { 0 }  ->  ( A `  r )  =  0 )
7674, 75syl 14 . . . . . 6  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( A `  r )  =  0 )
7776oveq1d 5966 . . . . 5  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( ( A `  r )  x.  ( X ^ r
) )  =  ( 0  x.  ( X ^ r ) ) )
787adantr 276 . . . . . . 7  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  X  e.  CC )
7978, 48expcld 10825 . . . . . 6  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( X ^ r )  e.  CC )
8079mul02d 8471 . . . . 5  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( 0  x.  ( X ^
r ) )  =  0 )
8177, 80eqtrd 2239 . . . 4  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( ( A `  r )  x.  ( X ^ r
) )  =  0 )
82 elfzelz 10154 . . . . . . 7  |-  ( p  e.  ( 0 ... M )  ->  p  e.  ZZ )
8382adantl 277 . . . . . 6  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  ->  p  e.  ZZ )
84 0zd 9391 . . . . . 6  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  ->  0  e.  ZZ )
8514adantr 276 . . . . . 6  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  ->  D  e.  ZZ )
86 fzdcel 10169 . . . . . 6  |-  ( ( p  e.  ZZ  /\  0  e.  ZZ  /\  D  e.  ZZ )  -> DECID  p  e.  (
0 ... D ) )
8783, 84, 85, 86syl3anc 1250 . . . . 5  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  -> DECID  p  e.  (
0 ... D ) )
8887ralrimiva 2580 . . . 4  |-  ( ph  ->  A. p  e.  ( 0 ... M )DECID  p  e.  ( 0 ... D ) )
89 eluzelz 9664 . . . . . 6  |-  ( M  e.  ( ZZ>= `  D
)  ->  M  e.  ZZ )
9033, 89syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
9112, 90fzfigd 10583 . . . 4  |-  ( ph  ->  ( 0 ... M
)  e.  Fin )
9235, 42, 81, 88, 91fisumss 11747 . . 3  |-  ( ph  -> 
sum_ r  e.  ( 0 ... D ) ( ( A `  r )  x.  ( X ^ r ) )  =  sum_ r  e.  ( 0 ... M ) ( ( A `  r )  x.  ( X ^ r ) ) )
9332, 92eqtrd 2239 . 2  |-  ( ph  ->  ( F `  X
)  =  sum_ r  e.  ( 0 ... M
) ( ( A `
 r )  x.  ( X ^ r
) ) )
94 fveq2 5583 . . . 4  |-  ( r  =  j  ->  ( A `  r )  =  ( A `  j ) )
95 oveq2 5959 . . . 4  |-  ( r  =  j  ->  ( X ^ r )  =  ( X ^ j
) )
9694, 95oveq12d 5969 . . 3  |-  ( r  =  j  ->  (
( A `  r
)  x.  ( X ^ r ) )  =  ( ( A `
 j )  x.  ( X ^ j
) ) )
9796cbvsumv 11716 . 2  |-  sum_ r  e.  ( 0 ... M
) ( ( A `
 r )  x.  ( X ^ r
) )  =  sum_ j  e.  ( 0 ... M ) ( ( A `  j
)  x.  ( X ^ j ) )
9893, 97eqtrdi 2255 1  |-  ( ph  ->  ( F `  X
)  =  sum_ j  e.  ( 0 ... M
) ( ( A `
 j )  x.  ( X ^ j
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2177   A.wral 2485    \ cdif 3164    u. cun 3165    C_ wss 3167   {csn 3634    |-> cmpt 4109   dom cdm 4679   "cima 4682   Fun wfun 5270   -->wf 5272   ` cfv 5276  (class class class)co 5951   CCcc 7930   0cc0 7932   1c1 7933    + caddc 7935    x. cmul 7937   NN0cn0 9302   ZZcz 9379   ZZ>=cuz 9655   ...cfz 10137   ^cexp 10690   sum_csu 11708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709
This theorem is referenced by:  dvply2g  15282
  Copyright terms: Public domain W3C validator