ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycoeid3 Unicode version

Theorem plycoeid3 15077
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
Hypotheses
Ref Expression
plycoeid3.d  |-  ( ph  ->  D  e.  NN0 )
plycoeid3.a  |-  ( ph  ->  A : NN0 --> CC )
plycoeid3.z  |-  ( ph  ->  ( A " ( ZZ>=
`  ( D  + 
1 ) ) )  =  { 0 } )
plycoeid3.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plycoeid3.m  |-  ( ph  ->  M  e.  ( ZZ>= `  D ) )
plycoeid3.x  |-  ( ph  ->  X  e.  CC )
Assertion
Ref Expression
plycoeid3  |-  ( ph  ->  ( F `  X
)  =  sum_ j  e.  ( 0 ... M
) ( ( A `
 j )  x.  ( X ^ j
) ) )
Distinct variable groups:    A, j, z    A, k, z    D, k, z    j, M    k, M    j, X, z    k, X
Allowed substitution hints:    ph( z, j, k)    D( j)    F( z, j, k)    M( z)

Proof of Theorem plycoeid3
Dummy variables  r  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycoeid3.f . . . . . 6  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
21fveq1d 5563 . . . . 5  |-  ( ph  ->  ( F `  X
)  =  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( z ^ k ) ) ) `  X ) )
3 eqid 2196 . . . . . 6  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( z ^ k ) ) )
4 oveq1 5932 . . . . . . . 8  |-  ( z  =  X  ->  (
z ^ k )  =  ( X ^
k ) )
54oveq2d 5941 . . . . . . 7  |-  ( z  =  X  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( X ^ k
) ) )
65sumeq2sdv 11552 . . . . . 6  |-  ( z  =  X  ->  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( X ^ k ) ) )
7 plycoeid3.x . . . . . 6  |-  ( ph  ->  X  e.  CC )
8 fveq2 5561 . . . . . . . . 9  |-  ( q  =  k  ->  ( A `  q )  =  ( A `  k ) )
9 oveq2 5933 . . . . . . . . 9  |-  ( q  =  k  ->  ( X ^ q )  =  ( X ^ k
) )
108, 9oveq12d 5943 . . . . . . . 8  |-  ( q  =  k  ->  (
( A `  q
)  x.  ( X ^ q ) )  =  ( ( A `
 k )  x.  ( X ^ k
) ) )
1110cbvsumv 11543 . . . . . . 7  |-  sum_ q  e.  ( 0 ... D
) ( ( A `
 q )  x.  ( X ^ q
) )  =  sum_ k  e.  ( 0 ... D ) ( ( A `  k
)  x.  ( X ^ k ) )
12 0zd 9355 . . . . . . . . 9  |-  ( ph  ->  0  e.  ZZ )
13 plycoeid3.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  NN0 )
1413nn0zd 9463 . . . . . . . . 9  |-  ( ph  ->  D  e.  ZZ )
1512, 14fzfigd 10540 . . . . . . . 8  |-  ( ph  ->  ( 0 ... D
)  e.  Fin )
16 plycoeid3.a . . . . . . . . . . 11  |-  ( ph  ->  A : NN0 --> CC )
1716adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  A : NN0 --> CC )
18 elfznn0 10206 . . . . . . . . . . 11  |-  ( q  e.  ( 0 ... D )  ->  q  e.  NN0 )
1918adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  q  e.  NN0 )
2017, 19ffvelcdmd 5701 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  ( A `  q )  e.  CC )
217adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  X  e.  CC )
2221, 19expcld 10782 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  ( X ^ q )  e.  CC )
2320, 22mulcld 8064 . . . . . . . 8  |-  ( (
ph  /\  q  e.  ( 0 ... D
) )  ->  (
( A `  q
)  x.  ( X ^ q ) )  e.  CC )
2415, 23fsumcl 11582 . . . . . . 7  |-  ( ph  -> 
sum_ q  e.  ( 0 ... D ) ( ( A `  q )  x.  ( X ^ q ) )  e.  CC )
2511, 24eqeltrrid 2284 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 0 ... D ) ( ( A `  k )  x.  ( X ^ k ) )  e.  CC )
263, 6, 7, 25fvmptd3 5658 . . . . 5  |-  ( ph  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... D ) ( ( A `  k )  x.  (
z ^ k ) ) ) `  X
)  =  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( X ^ k
) ) )
272, 26eqtrd 2229 . . . 4  |-  ( ph  ->  ( F `  X
)  =  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( X ^ k
) ) )
28 fveq2 5561 . . . . . 6  |-  ( k  =  r  ->  ( A `  k )  =  ( A `  r ) )
29 oveq2 5933 . . . . . 6  |-  ( k  =  r  ->  ( X ^ k )  =  ( X ^ r
) )
3028, 29oveq12d 5943 . . . . 5  |-  ( k  =  r  ->  (
( A `  k
)  x.  ( X ^ k ) )  =  ( ( A `
 r )  x.  ( X ^ r
) ) )
3130cbvsumv 11543 . . . 4  |-  sum_ k  e.  ( 0 ... D
) ( ( A `
 k )  x.  ( X ^ k
) )  =  sum_ r  e.  ( 0 ... D ) ( ( A `  r
)  x.  ( X ^ r ) )
3227, 31eqtrdi 2245 . . 3  |-  ( ph  ->  ( F `  X
)  =  sum_ r  e.  ( 0 ... D
) ( ( A `
 r )  x.  ( X ^ r
) ) )
33 plycoeid3.m . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  D ) )
34 fzss2 10156 . . . . 5  |-  ( M  e.  ( ZZ>= `  D
)  ->  ( 0 ... D )  C_  ( 0 ... M
) )
3533, 34syl 14 . . . 4  |-  ( ph  ->  ( 0 ... D
)  C_  ( 0 ... M ) )
3616adantr 276 . . . . . 6  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  A : NN0 --> CC )
37 elfznn0 10206 . . . . . . 7  |-  ( r  e.  ( 0 ... D )  ->  r  e.  NN0 )
3837adantl 277 . . . . . 6  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  r  e.  NN0 )
3936, 38ffvelcdmd 5701 . . . . 5  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  ( A `  r )  e.  CC )
407adantr 276 . . . . . 6  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  X  e.  CC )
4140, 38expcld 10782 . . . . 5  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  ( X ^ r )  e.  CC )
4239, 41mulcld 8064 . . . 4  |-  ( (
ph  /\  r  e.  ( 0 ... D
) )  ->  (
( A `  r
)  x.  ( X ^ r ) )  e.  CC )
43 eldifn 3287 . . . . . . . . . 10  |-  ( r  e.  ( ( 0 ... M )  \ 
( 0 ... D
) )  ->  -.  r  e.  ( 0 ... D ) )
4443adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  -.  r  e.  ( 0 ... D
) )
45 eldifi 3286 . . . . . . . . . . . . . 14  |-  ( r  e.  ( ( 0 ... M )  \ 
( 0 ... D
) )  ->  r  e.  ( 0 ... M
) )
4645adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  ( 0 ... M
) )
47 elfznn0 10206 . . . . . . . . . . . . 13  |-  ( r  e.  ( 0 ... M )  ->  r  e.  NN0 )
4846, 47syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  NN0 )
49 nn0split 10228 . . . . . . . . . . . . . 14  |-  ( D  e.  NN0  ->  NN0  =  ( ( 0 ... D )  u.  ( ZZ>=
`  ( D  + 
1 ) ) ) )
5013, 49syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  NN0  =  ( ( 0 ... D )  u.  ( ZZ>= `  ( D  +  1 ) ) ) )
5150adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  NN0  =  ( ( 0 ... D
)  u.  ( ZZ>= `  ( D  +  1
) ) ) )
5248, 51eleqtrd 2275 . . . . . . . . . . 11  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  ( ( 0 ... D )  u.  ( ZZ>=
`  ( D  + 
1 ) ) ) )
53 elun 3305 . . . . . . . . . . 11  |-  ( r  e.  ( ( 0 ... D )  u.  ( ZZ>= `  ( D  +  1 ) ) )  <->  ( r  e.  ( 0 ... D
)  \/  r  e.  ( ZZ>= `  ( D  +  1 ) ) ) )
5452, 53sylib 122 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( r  e.  ( 0 ... D
)  \/  r  e.  ( ZZ>= `  ( D  +  1 ) ) ) )
5554orcomd 730 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( r  e.  ( ZZ>= `  ( D  +  1 ) )  \/  r  e.  ( 0 ... D ) ) )
5644, 55ecased 1360 . . . . . . . 8  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  r  e.  ( ZZ>= `  ( D  +  1 ) ) )
57 plycoeid3.z . . . . . . . . . . 11  |-  ( ph  ->  ( A " ( ZZ>=
`  ( D  + 
1 ) ) )  =  { 0 } )
58 eqimss 3238 . . . . . . . . . . 11  |-  ( ( A " ( ZZ>= `  ( D  +  1
) ) )  =  { 0 }  ->  ( A " ( ZZ>= `  ( D  +  1
) ) )  C_  { 0 } )
5957, 58syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( A " ( ZZ>=
`  ( D  + 
1 ) ) ) 
C_  { 0 } )
6016ffund 5414 . . . . . . . . . . 11  |-  ( ph  ->  Fun  A )
61 peano2nn0 9306 . . . . . . . . . . . . . . . 16  |-  ( D  e.  NN0  ->  ( D  +  1 )  e. 
NN0 )
6213, 61syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D  +  1 )  e.  NN0 )
63 nn0uz 9653 . . . . . . . . . . . . . . 15  |-  NN0  =  ( ZZ>= `  0 )
6462, 63eleqtrdi 2289 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  +  1 )  e.  ( ZZ>= ` 
0 ) )
65 uzss 9639 . . . . . . . . . . . . . 14  |-  ( ( D  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= `  ( D  +  1
) )  C_  ( ZZ>=
`  0 ) )
6664, 65syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  ( D  +  1 ) ) 
C_  ( ZZ>= `  0
) )
6766, 63sseqtrrdi 3233 . . . . . . . . . . . 12  |-  ( ph  ->  ( ZZ>= `  ( D  +  1 ) ) 
C_  NN0 )
6816fdmd 5417 . . . . . . . . . . . 12  |-  ( ph  ->  dom  A  =  NN0 )
6967, 68sseqtrrd 3223 . . . . . . . . . . 11  |-  ( ph  ->  ( ZZ>= `  ( D  +  1 ) ) 
C_  dom  A )
70 funimass4 5614 . . . . . . . . . . 11  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( D  + 
1 ) )  C_  dom  A )  ->  (
( A " ( ZZ>=
`  ( D  + 
1 ) ) ) 
C_  { 0 }  <->  A. r  e.  ( ZZ>=
`  ( D  + 
1 ) ) ( A `  r )  e.  { 0 } ) )
7160, 69, 70syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( ( A "
( ZZ>= `  ( D  +  1 ) ) )  C_  { 0 } 
<-> 
A. r  e.  (
ZZ>= `  ( D  + 
1 ) ) ( A `  r )  e.  { 0 } ) )
7259, 71mpbid 147 . . . . . . . . 9  |-  ( ph  ->  A. r  e.  (
ZZ>= `  ( D  + 
1 ) ) ( A `  r )  e.  { 0 } )
7372r19.21bi 2585 . . . . . . . 8  |-  ( (
ph  /\  r  e.  ( ZZ>= `  ( D  +  1 ) ) )  ->  ( A `  r )  e.  {
0 } )
7456, 73syldan 282 . . . . . . 7  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( A `  r )  e.  {
0 } )
75 elsni 3641 . . . . . . 7  |-  ( ( A `  r )  e.  { 0 }  ->  ( A `  r )  =  0 )
7674, 75syl 14 . . . . . 6  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( A `  r )  =  0 )
7776oveq1d 5940 . . . . 5  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( ( A `  r )  x.  ( X ^ r
) )  =  ( 0  x.  ( X ^ r ) ) )
787adantr 276 . . . . . . 7  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  X  e.  CC )
7978, 48expcld 10782 . . . . . 6  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( X ^ r )  e.  CC )
8079mul02d 8435 . . . . 5  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( 0  x.  ( X ^
r ) )  =  0 )
8177, 80eqtrd 2229 . . . 4  |-  ( (
ph  /\  r  e.  ( ( 0 ... M )  \  (
0 ... D ) ) )  ->  ( ( A `  r )  x.  ( X ^ r
) )  =  0 )
82 elfzelz 10117 . . . . . . 7  |-  ( p  e.  ( 0 ... M )  ->  p  e.  ZZ )
8382adantl 277 . . . . . 6  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  ->  p  e.  ZZ )
84 0zd 9355 . . . . . 6  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  ->  0  e.  ZZ )
8514adantr 276 . . . . . 6  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  ->  D  e.  ZZ )
86 fzdcel 10132 . . . . . 6  |-  ( ( p  e.  ZZ  /\  0  e.  ZZ  /\  D  e.  ZZ )  -> DECID  p  e.  (
0 ... D ) )
8783, 84, 85, 86syl3anc 1249 . . . . 5  |-  ( (
ph  /\  p  e.  ( 0 ... M
) )  -> DECID  p  e.  (
0 ... D ) )
8887ralrimiva 2570 . . . 4  |-  ( ph  ->  A. p  e.  ( 0 ... M )DECID  p  e.  ( 0 ... D ) )
89 eluzelz 9627 . . . . . 6  |-  ( M  e.  ( ZZ>= `  D
)  ->  M  e.  ZZ )
9033, 89syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
9112, 90fzfigd 10540 . . . 4  |-  ( ph  ->  ( 0 ... M
)  e.  Fin )
9235, 42, 81, 88, 91fisumss 11574 . . 3  |-  ( ph  -> 
sum_ r  e.  ( 0 ... D ) ( ( A `  r )  x.  ( X ^ r ) )  =  sum_ r  e.  ( 0 ... M ) ( ( A `  r )  x.  ( X ^ r ) ) )
9332, 92eqtrd 2229 . 2  |-  ( ph  ->  ( F `  X
)  =  sum_ r  e.  ( 0 ... M
) ( ( A `
 r )  x.  ( X ^ r
) ) )
94 fveq2 5561 . . . 4  |-  ( r  =  j  ->  ( A `  r )  =  ( A `  j ) )
95 oveq2 5933 . . . 4  |-  ( r  =  j  ->  ( X ^ r )  =  ( X ^ j
) )
9694, 95oveq12d 5943 . . 3  |-  ( r  =  j  ->  (
( A `  r
)  x.  ( X ^ r ) )  =  ( ( A `
 j )  x.  ( X ^ j
) ) )
9796cbvsumv 11543 . 2  |-  sum_ r  e.  ( 0 ... M
) ( ( A `
 r )  x.  ( X ^ r
) )  =  sum_ j  e.  ( 0 ... M ) ( ( A `  j
)  x.  ( X ^ j ) )
9893, 97eqtrdi 2245 1  |-  ( ph  ->  ( F `  X
)  =  sum_ j  e.  ( 0 ... M
) ( ( A `
 j )  x.  ( X ^ j
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475    \ cdif 3154    u. cun 3155    C_ wss 3157   {csn 3623    |-> cmpt 4095   dom cdm 4664   "cima 4667   Fun wfun 5253   -->wf 5255   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901   NN0cn0 9266   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100   ^cexp 10647   sum_csu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  dvply2g  15086
  Copyright terms: Public domain W3C validator