ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geoisumr GIF version

Theorem geoisumr 11944
Description: The infinite sum of reciprocals 1 + (1 / 𝐴)↑1 + (1 / 𝐴)↑2... is 𝐴 / (𝐴 − 1). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisumr ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → Σ𝑘 ∈ ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1)))
Distinct variable group:   𝐴,𝑘

Proof of Theorem geoisumr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9718 . 2 0 = (ℤ‘0)
2 0zd 9419 . 2 ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 0 ∈ ℤ)
3 simpr 110 . . 3 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
4 simpll 527 . . . . 5 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
54abscld 11607 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
6 0red 8108 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → 0 ∈ ℝ)
7 1red 8122 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
8 0lt1 8234 . . . . . . . . 9 0 < 1
98a1i 9 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → 0 < 1)
10 simplr 528 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → 1 < (abs‘𝐴))
116, 7, 5, 9, 10lttrd 8233 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → 0 < (abs‘𝐴))
125, 11gt0ap0d 8737 . . . . . 6 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) # 0)
13 abs00ap 11488 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
1413ad2antrr 488 . . . . . 6 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
1512, 14mpbid 147 . . . . 5 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → 𝐴 # 0)
164, 15recclapd 8889 . . . 4 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝐴) ∈ ℂ)
1716, 3expcld 10855 . . 3 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → ((1 / 𝐴)↑𝑘) ∈ ℂ)
18 oveq2 5975 . . . 4 (𝑛 = 𝑘 → ((1 / 𝐴)↑𝑛) = ((1 / 𝐴)↑𝑘))
19 eqid 2207 . . . 4 (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))
2018, 19fvmptg 5678 . . 3 ((𝑘 ∈ ℕ0 ∧ ((1 / 𝐴)↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))‘𝑘) = ((1 / 𝐴)↑𝑘))
213, 17, 20syl2anc 411 . 2 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))‘𝑘) = ((1 / 𝐴)↑𝑘))
22 simpl 109 . . 3 ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 𝐴 ∈ ℂ)
23 simpr 110 . . 3 ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 1 < (abs‘𝐴))
2422, 23, 21georeclim 11939 . 2 ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))) ⇝ (𝐴 / (𝐴 − 1)))
251, 2, 21, 17, 24isumclim 11847 1 ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → Σ𝑘 ∈ ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178   class class class wbr 4059  cmpt 4121  cfv 5290  (class class class)co 5967  cc 7958  0cc0 7960  1c1 7961   < clt 8142  cmin 8278   # cap 8689   / cdiv 8780  0cn0 9330  cexp 10720  abscabs 11423  Σcsu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator