| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > crng2idl | GIF version | ||
| Description: In a commutative ring, a two-sided ideal is the same as a left ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| crng2idl.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
| Ref | Expression |
|---|---|
| crng2idl | ⊢ (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm 3373 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
| 2 | crng2idl.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 3 | eqid 2196 | . . . . 5 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 4 | 2, 3 | crngridl 14112 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘(oppr‘𝑅))) |
| 5 | 4 | ineq2d 3365 | . . 3 ⊢ (𝑅 ∈ CRing → (𝐼 ∩ 𝐼) = (𝐼 ∩ (LIdeal‘(oppr‘𝑅)))) |
| 6 | 1, 5 | eqtr3id 2243 | . 2 ⊢ (𝑅 ∈ CRing → 𝐼 = (𝐼 ∩ (LIdeal‘(oppr‘𝑅)))) |
| 7 | eqid 2196 | . . 3 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
| 8 | eqid 2196 | . . 3 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 9 | 2, 3, 7, 8 | 2idlvalg 14085 | . 2 ⊢ (𝑅 ∈ CRing → (2Ideal‘𝑅) = (𝐼 ∩ (LIdeal‘(oppr‘𝑅)))) |
| 10 | 6, 9 | eqtr4d 2232 | 1 ⊢ (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∩ cin 3156 ‘cfv 5259 CRingccrg 13579 opprcoppr 13649 LIdealclidl 14049 2Idealc2idl 14081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-addcom 7982 ax-addass 7984 ax-i2m1 7987 ax-0lt1 7988 ax-0id 7990 ax-rnegex 7991 ax-pre-ltirr 7994 ax-pre-lttrn 7996 ax-pre-ltadd 7998 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5926 df-oprab 5927 df-mpo 5928 df-tpos 6305 df-pnf 8066 df-mnf 8067 df-ltxr 8069 df-inn 8994 df-2 9052 df-3 9053 df-4 9054 df-5 9055 df-6 9056 df-7 9057 df-8 9058 df-ndx 12692 df-slot 12693 df-base 12695 df-sets 12696 df-iress 12697 df-plusg 12779 df-mulr 12780 df-sca 12782 df-vsca 12783 df-ip 12784 df-cmn 13442 df-mgp 13503 df-cring 13581 df-oppr 13650 df-lssm 13935 df-lsp 13969 df-sra 14017 df-rgmod 14018 df-lidl 14051 df-rsp 14052 df-2idl 14082 |
| This theorem is referenced by: quscrng 14115 znzrh2 14228 |
| Copyright terms: Public domain | W3C validator |