ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0div GIF version

Theorem gt0div 8827
Description: Division of a positive number by a positive number. (Contributed by NM, 28-Sep-2005.)
Assertion
Ref Expression
gt0div ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 < 𝐴 ↔ 0 < (𝐴 / 𝐵)))

Proof of Theorem gt0div
StepHypRef Expression
1 0re 7957 . . . 4 0 ∈ ℝ
2 ltdiv1 8825 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 < 𝐴 ↔ (0 / 𝐵) < (𝐴 / 𝐵)))
31, 2mp3an1 1324 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 < 𝐴 ↔ (0 / 𝐵) < (𝐴 / 𝐵)))
433impb 1199 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 < 𝐴 ↔ (0 / 𝐵) < (𝐴 / 𝐵)))
5 gt0ap0 8583 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 # 0)
6 recn 7944 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
7 div0ap 8659 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (0 / 𝐵) = 0)
86, 7sylan 283 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐵 # 0) → (0 / 𝐵) = 0)
95, 8syldan 282 . . . 4 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 / 𝐵) = 0)
109breq1d 4014 . . 3 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → ((0 / 𝐵) < (𝐴 / 𝐵) ↔ 0 < (𝐴 / 𝐵)))
11103adant1 1015 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → ((0 / 𝐵) < (𝐴 / 𝐵) ↔ 0 < (𝐴 / 𝐵)))
124, 11bitrd 188 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 < 𝐴 ↔ 0 < (𝐴 / 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4004  (class class class)co 5875  cc 7809  cr 7810  0cc0 7811   < clt 7992   # cap 8538   / cdiv 8629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630
This theorem is referenced by:  divgt0  8829  halfpos2  9149  elpq  9648  gt0divd  9734  logbgt0b  14387
  Copyright terms: Public domain W3C validator