ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdivcl GIF version

Theorem qdivcl 9462
Description: Closure of division of rationals. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
qdivcl ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)

Proof of Theorem qdivcl
StepHypRef Expression
1 qcn 9453 . . . 4 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
213ad2ant1 1003 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
3 qcn 9453 . . . 4 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
433ad2ant2 1004 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
5 simp3 984 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
6 0z 9089 . . . . . . 7 0 ∈ ℤ
7 zq 9445 . . . . . . 7 (0 ∈ ℤ → 0 ∈ ℚ)
86, 7ax-mp 5 . . . . . 6 0 ∈ ℚ
9 qapne 9458 . . . . . 6 ((𝐵 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐵 # 0 ↔ 𝐵 ≠ 0))
108, 9mpan2 422 . . . . 5 (𝐵 ∈ ℚ → (𝐵 # 0 ↔ 𝐵 ≠ 0))
11103ad2ant2 1004 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐵 # 0 ↔ 𝐵 ≠ 0))
125, 11mpbird 166 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 # 0)
132, 4, 12divrecapd 8577 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
14 qreccl 9461 . . . 4 ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℚ)
15 qmulcl 9456 . . . 4 ((𝐴 ∈ ℚ ∧ (1 / 𝐵) ∈ ℚ) → (𝐴 · (1 / 𝐵)) ∈ ℚ)
1614, 15sylan2 284 . . 3 ((𝐴 ∈ ℚ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 · (1 / 𝐵)) ∈ ℚ)
17163impb 1178 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · (1 / 𝐵)) ∈ ℚ)
1813, 17eqeltrd 2217 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963  wcel 1481  wne 2309   class class class wbr 3937  (class class class)co 5782  cc 7642  0cc0 7644  1c1 7645   · cmul 7649   # cap 8367   / cdiv 8456  cz 9078  cq 9438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439
This theorem is referenced by:  irrmul  9466  flqdiv  10125  modqval  10128  modqvalr  10129  modqcl  10130  flqpmodeq  10131  modq0  10133  modqge0  10136  modqlt  10137  modqdiffl  10139  modqdifz  10140  modqmulnn  10146  modqvalp1  10147  modqid  10153  modqcyc  10163  modqadd1  10165  modqmuladd  10170  modqmuladdnn0  10172  modqmul1  10181  modqdi  10196  modqsubdir  10197  fldivndvdslt  11668  apdiff  13416
  Copyright terms: Public domain W3C validator