| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cjmuli | GIF version | ||
| Description: Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.) |
| Ref | Expression |
|---|---|
| recl.1 | ⊢ 𝐴 ∈ ℂ |
| readdi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| cjmuli | ⊢ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recl.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | readdi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | cjmul 11357 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2178 ‘cfv 5291 (class class class)co 5969 ℂcc 7960 · cmul 7967 ∗ccj 11311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4179 ax-pow 4235 ax-pr 4270 ax-un 4499 ax-setind 4604 ax-cnex 8053 ax-resscn 8054 ax-1cn 8055 ax-1re 8056 ax-icn 8057 ax-addcl 8058 ax-addrcl 8059 ax-mulcl 8060 ax-mulrcl 8061 ax-addcom 8062 ax-mulcom 8063 ax-addass 8064 ax-mulass 8065 ax-distr 8066 ax-i2m1 8067 ax-0lt1 8068 ax-1rid 8069 ax-0id 8070 ax-rnegex 8071 ax-precex 8072 ax-cnre 8073 ax-pre-ltirr 8074 ax-pre-ltwlin 8075 ax-pre-lttrn 8076 ax-pre-apti 8077 ax-pre-ltadd 8078 ax-pre-mulgt0 8079 ax-pre-mulext 8080 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2779 df-sbc 3007 df-dif 3177 df-un 3179 df-in 3181 df-ss 3188 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-br 4061 df-opab 4123 df-mpt 4124 df-id 4359 df-po 4362 df-iso 4363 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-dm 4704 df-rn 4705 df-res 4706 df-ima 4707 df-iota 5252 df-fun 5293 df-fn 5294 df-f 5295 df-fv 5299 df-riota 5924 df-ov 5972 df-oprab 5973 df-mpo 5974 df-pnf 8146 df-mnf 8147 df-xr 8148 df-ltxr 8149 df-le 8150 df-sub 8282 df-neg 8283 df-reap 8685 df-ap 8692 df-div 8783 df-2 9132 df-cj 11314 df-re 11315 df-im 11316 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |