ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjmuli GIF version

Theorem cjmuli 11405
Description: Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
Hypotheses
Ref Expression
recl.1 𝐴 ∈ ℂ
readdi.2 𝐵 ∈ ℂ
Assertion
Ref Expression
cjmuli (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))

Proof of Theorem cjmuli
StepHypRef Expression
1 recl.1 . 2 𝐴 ∈ ℂ
2 readdi.2 . 2 𝐵 ∈ ℂ
3 cjmul 11357 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
41, 2, 3mp2an 426 1 (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2178  cfv 5291  (class class class)co 5969  cc 7960   · cmul 7967  ccj 11311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4179  ax-pow 4235  ax-pr 4270  ax-un 4499  ax-setind 4604  ax-cnex 8053  ax-resscn 8054  ax-1cn 8055  ax-1re 8056  ax-icn 8057  ax-addcl 8058  ax-addrcl 8059  ax-mulcl 8060  ax-mulrcl 8061  ax-addcom 8062  ax-mulcom 8063  ax-addass 8064  ax-mulass 8065  ax-distr 8066  ax-i2m1 8067  ax-0lt1 8068  ax-1rid 8069  ax-0id 8070  ax-rnegex 8071  ax-precex 8072  ax-cnre 8073  ax-pre-ltirr 8074  ax-pre-ltwlin 8075  ax-pre-lttrn 8076  ax-pre-apti 8077  ax-pre-ltadd 8078  ax-pre-mulgt0 8079  ax-pre-mulext 8080
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2779  df-sbc 3007  df-dif 3177  df-un 3179  df-in 3181  df-ss 3188  df-pw 3629  df-sn 3650  df-pr 3651  df-op 3653  df-uni 3866  df-br 4061  df-opab 4123  df-mpt 4124  df-id 4359  df-po 4362  df-iso 4363  df-xp 4700  df-rel 4701  df-cnv 4702  df-co 4703  df-dm 4704  df-rn 4705  df-res 4706  df-ima 4707  df-iota 5252  df-fun 5293  df-fn 5294  df-f 5295  df-fv 5299  df-riota 5924  df-ov 5972  df-oprab 5973  df-mpo 5974  df-pnf 8146  df-mnf 8147  df-xr 8148  df-ltxr 8149  df-le 8150  df-sub 8282  df-neg 8283  df-reap 8685  df-ap 8692  df-div 8783  df-2 9132  df-cj 11314  df-re 11315  df-im 11316
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator