| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > edgusgren | GIF version | ||
| Description: An edge of a simple graph is a proper unordered pair of vertices. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 14-Oct-2020.) |
| Ref | Expression |
|---|---|
| edgusgren | ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≈ 2o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredgssen 15960 | . . 3 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}) | |
| 2 | 1 | sselda 3224 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}) |
| 3 | breq1 4086 | . . 3 ⊢ (𝑥 = 𝐸 → (𝑥 ≈ 2o ↔ 𝐸 ≈ 2o)) | |
| 4 | 3 | elrab 2959 | . 2 ⊢ (𝐸 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o} ↔ (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≈ 2o)) |
| 5 | 2, 4 | sylib 122 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≈ 2o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 {crab 2512 𝒫 cpw 3649 class class class wbr 4083 ‘cfv 5318 2oc2o 6556 ≈ cen 6885 Vtxcvtx 15813 Edgcedg 15858 USGraphcusgr 15952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-sub 8319 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-n0 9370 df-dec 9579 df-ndx 13035 df-slot 13036 df-base 13038 df-edgf 15806 df-vtx 15815 df-iedg 15816 df-edg 15859 df-usgren 15954 |
| This theorem is referenced by: usgruspgrben 15984 usgredgppren 15995 edgssv2en 15997 |
| Copyright terms: Public domain | W3C validator |