| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isuspgropen | GIF version | ||
| Description: The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 25-Nov-2021.) |
| Ref | Expression |
|---|---|
| isuspgropen | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ 𝒫 𝑉 ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opexg 4291 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 〈𝑉, 𝐸〉 ∈ V) | |
| 2 | eqid 2207 | . . . 4 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
| 3 | eqid 2207 | . . . 4 ⊢ (iEdg‘〈𝑉, 𝐸〉) = (iEdg‘〈𝑉, 𝐸〉) | |
| 4 | 2, 3 | isuspgren 15912 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ V → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ (iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)–1-1→{𝑝 ∈ 𝒫 (Vtx‘〈𝑉, 𝐸〉) ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)})) |
| 5 | 1, 4 | syl 14 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ (iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)–1-1→{𝑝 ∈ 𝒫 (Vtx‘〈𝑉, 𝐸〉) ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)})) |
| 6 | opiedgfv 15785 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
| 7 | 6 | dmeqd 4900 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → dom (iEdg‘〈𝑉, 𝐸〉) = dom 𝐸) |
| 8 | opvtxfv 15782 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 9 | 8 | pweqd 3632 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 𝒫 (Vtx‘〈𝑉, 𝐸〉) = 𝒫 𝑉) |
| 10 | 9 | rabeqdv 2771 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → {𝑝 ∈ 𝒫 (Vtx‘〈𝑉, 𝐸〉) ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)} = {𝑝 ∈ 𝒫 𝑉 ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)}) |
| 11 | 6, 7, 10 | f1eq123d 5537 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → ((iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)–1-1→{𝑝 ∈ 𝒫 (Vtx‘〈𝑉, 𝐸〉) ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)} ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ 𝒫 𝑉 ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)})) |
| 12 | 5, 11 | bitrd 188 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ 𝒫 𝑉 ∣ (𝑝 ≈ 1o ∨ 𝑝 ≈ 2o)})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∈ wcel 2178 {crab 2490 Vcvv 2777 𝒫 cpw 3627 〈cop 3647 class class class wbr 4060 dom cdm 4694 –1-1→wf1 5288 ‘cfv 5291 1oc1o 6520 2oc2o 6521 ≈ cen 6850 Vtxcvtx 15772 iEdgciedg 15773 USPGraphcuspgr 15908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4179 ax-pow 4235 ax-pr 4270 ax-un 4499 ax-setind 4604 ax-cnex 8053 ax-resscn 8054 ax-1cn 8055 ax-1re 8056 ax-icn 8057 ax-addcl 8058 ax-addrcl 8059 ax-mulcl 8060 ax-addcom 8062 ax-mulcom 8063 ax-addass 8064 ax-mulass 8065 ax-distr 8066 ax-i2m1 8067 ax-1rid 8069 ax-0id 8070 ax-rnegex 8071 ax-cnre 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2779 df-sbc 3007 df-csb 3103 df-dif 3177 df-un 3179 df-in 3181 df-ss 3188 df-if 3581 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-int 3901 df-br 4061 df-opab 4123 df-mpt 4124 df-id 4359 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-dm 4704 df-rn 4705 df-res 4706 df-iota 5252 df-fun 5293 df-fn 5294 df-f 5295 df-f1 5296 df-fo 5297 df-fv 5299 df-riota 5924 df-ov 5972 df-oprab 5973 df-mpo 5974 df-1st 6251 df-2nd 6252 df-sub 8282 df-inn 9074 df-2 9132 df-3 9133 df-4 9134 df-5 9135 df-6 9136 df-7 9137 df-8 9138 df-9 9139 df-n0 9333 df-dec 9542 df-ndx 12996 df-slot 12997 df-base 12999 df-edgf 15765 df-vtx 15774 df-iedg 15775 df-uspgren 15910 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |