| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqnegd | GIF version | ||
| Description: Negation property of the modulo operation. (Contributed by Jim Kingdon, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqnegd.1 | ⊢ (𝜑 → 𝐴 ∈ ℚ) |
| modqnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℚ) |
| modqnegd.3 | ⊢ (𝜑 → 𝐶 ∈ ℚ) |
| modqnegd.cgt0 | ⊢ (𝜑 → 0 < 𝐶) |
| modqnegd.4 | ⊢ (𝜑 → (𝐴 mod 𝐶) = (𝐵 mod 𝐶)) |
| Ref | Expression |
|---|---|
| modqnegd | ⊢ (𝜑 → (-𝐴 mod 𝐶) = (-𝐵 mod 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modqnegd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℚ) | |
| 2 | modqnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℚ) | |
| 3 | neg1z 9466 | . . . 4 ⊢ -1 ∈ ℤ | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → -1 ∈ ℤ) |
| 5 | modqnegd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℚ) | |
| 6 | modqnegd.cgt0 | . . 3 ⊢ (𝜑 → 0 < 𝐶) | |
| 7 | modqnegd.4 | . . 3 ⊢ (𝜑 → (𝐴 mod 𝐶) = (𝐵 mod 𝐶)) | |
| 8 | 1, 2, 4, 5, 6, 7 | modqmul1 10586 | . 2 ⊢ (𝜑 → ((𝐴 · -1) mod 𝐶) = ((𝐵 · -1) mod 𝐶)) |
| 9 | qcn 9817 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
| 10 | 1, 9 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 11 | 4 | zcnd 9558 | . . . . 5 ⊢ (𝜑 → -1 ∈ ℂ) |
| 12 | 10, 11 | mulcomd 8156 | . . . 4 ⊢ (𝜑 → (𝐴 · -1) = (-1 · 𝐴)) |
| 13 | 10 | mulm1d 8544 | . . . 4 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| 14 | 12, 13 | eqtrd 2262 | . . 3 ⊢ (𝜑 → (𝐴 · -1) = -𝐴) |
| 15 | 14 | oveq1d 6009 | . 2 ⊢ (𝜑 → ((𝐴 · -1) mod 𝐶) = (-𝐴 mod 𝐶)) |
| 16 | qcn 9817 | . . . . . 6 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
| 17 | 2, 16 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 18 | 17, 11 | mulcomd 8156 | . . . 4 ⊢ (𝜑 → (𝐵 · -1) = (-1 · 𝐵)) |
| 19 | 17 | mulm1d 8544 | . . . 4 ⊢ (𝜑 → (-1 · 𝐵) = -𝐵) |
| 20 | 18, 19 | eqtrd 2262 | . . 3 ⊢ (𝜑 → (𝐵 · -1) = -𝐵) |
| 21 | 20 | oveq1d 6009 | . 2 ⊢ (𝜑 → ((𝐵 · -1) mod 𝐶) = (-𝐵 mod 𝐶)) |
| 22 | 8, 15, 21 | 3eqtr3d 2270 | 1 ⊢ (𝜑 → (-𝐴 mod 𝐶) = (-𝐵 mod 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 (class class class)co 5994 ℂcc 7985 0cc0 7987 1c1 7988 · cmul 7992 < clt 8169 -cneg 8306 ℤcz 9434 ℚcq 9802 mod cmo 10531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-po 4384 df-iso 4385 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-n0 9358 df-z 9435 df-q 9803 df-rp 9838 df-fl 10477 df-mod 10532 |
| This theorem is referenced by: modqsub12d 10590 |
| Copyright terms: Public domain | W3C validator |