| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngm2neg | GIF version | ||
| Description: Double negation of a product in a non-unital ring (mul2neg 8441 analog). (Contributed by Mario Carneiro, 4-Dec-2014.) Generalization of ringm2neg 13687. (Revised by AV, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngneglmul.t | ⊢ · = (.r‘𝑅) |
| rngneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
| rngneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rngm2neg | ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑋 · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | rngneglmul.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 3 | rngneglmul.n | . . 3 ⊢ 𝑁 = (invg‘𝑅) | |
| 4 | rngneglmul.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 5 | rngneglmul.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | rnggrp 13570 | . . . . 5 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 7 | 4, 6 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | rngneglmul.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 1, 3, 7, 8 | grpinvcld 13251 | . . 3 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
| 10 | 1, 2, 3, 4, 5, 9 | rngmneg1 13579 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑁‘(𝑋 · (𝑁‘𝑌)))) |
| 11 | 1, 2, 3, 4, 5, 8 | rngmneg2 13580 | . . 3 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| 12 | 11 | fveq2d 5565 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 · (𝑁‘𝑌))) = (𝑁‘(𝑁‘(𝑋 · 𝑌)))) |
| 13 | 1, 2 | rngcl 13576 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 14 | 4, 5, 8, 13 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 15 | 1, 3 | grpinvinv 13269 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵) → (𝑁‘(𝑁‘(𝑋 · 𝑌))) = (𝑋 · 𝑌)) |
| 16 | 7, 14, 15 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑁‘(𝑁‘(𝑋 · 𝑌))) = (𝑋 · 𝑌)) |
| 17 | 10, 12, 16 | 3eqtrd 2233 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑋 · 𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 .rcmulr 12781 Grpcgrp 13202 invgcminusg 13203 Rngcrng 13564 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-abl 13493 df-mgp 13553 df-rng 13565 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |