| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngm2neg | GIF version | ||
| Description: Double negation of a product in a non-unital ring (mul2neg 8505 analog). (Contributed by Mario Carneiro, 4-Dec-2014.) Generalization of ringm2neg 13932. (Revised by AV, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngneglmul.t | ⊢ · = (.r‘𝑅) |
| rngneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
| rngneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rngm2neg | ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑋 · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | rngneglmul.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 3 | rngneglmul.n | . . 3 ⊢ 𝑁 = (invg‘𝑅) | |
| 4 | rngneglmul.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 5 | rngneglmul.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | rnggrp 13815 | . . . . 5 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 7 | 4, 6 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | rngneglmul.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 1, 3, 7, 8 | grpinvcld 13496 | . . 3 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
| 10 | 1, 2, 3, 4, 5, 9 | rngmneg1 13824 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑁‘(𝑋 · (𝑁‘𝑌)))) |
| 11 | 1, 2, 3, 4, 5, 8 | rngmneg2 13825 | . . 3 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| 12 | 11 | fveq2d 5603 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 · (𝑁‘𝑌))) = (𝑁‘(𝑁‘(𝑋 · 𝑌)))) |
| 13 | 1, 2 | rngcl 13821 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 14 | 4, 5, 8, 13 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 15 | 1, 3 | grpinvinv 13514 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵) → (𝑁‘(𝑁‘(𝑋 · 𝑌))) = (𝑋 · 𝑌)) |
| 16 | 7, 14, 15 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑁‘(𝑁‘(𝑋 · 𝑌))) = (𝑋 · 𝑌)) |
| 17 | 10, 12, 16 | 3eqtrd 2244 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑋 · 𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 .rcmulr 13025 Grpcgrp 13447 invgcminusg 13448 Rngcrng 13809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-plusg 13037 df-mulr 13038 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-abl 13738 df-mgp 13798 df-rng 13810 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |