| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sraaddgg | GIF version | ||
| Description: Additive operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| srapart.ex | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| sraaddgg | ⊢ (𝜑 → (+g‘𝑊) = (+g‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | . 2 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
| 2 | srapart.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 3 | srapart.ex | . 2 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 4 | plusgslid 12944 | . 2 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 5 | scandxnplusgndx 12987 | . 2 ⊢ (Scalar‘ndx) ≠ (+g‘ndx) | |
| 6 | vscandxnplusgndx 12992 | . 2 ⊢ ( ·𝑠 ‘ndx) ≠ (+g‘ndx) | |
| 7 | ipndxnplusgndx 13005 | . 2 ⊢ (·𝑖‘ndx) ≠ (+g‘ndx) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | sralemg 14200 | 1 ⊢ (𝜑 → (+g‘𝑊) = (+g‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ⊆ wss 3166 ‘cfv 5271 Basecbs 12832 +gcplusg 12909 subringAlg csra 14195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-iress 12840 df-plusg 12922 df-mulr 12923 df-sca 12925 df-vsca 12926 df-ip 12927 df-sra 14197 |
| This theorem is referenced by: sraring 14211 sralmod 14212 sralmod0g 14213 rlmplusgg 14218 |
| Copyright terms: Public domain | W3C validator |