| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sradsg | GIF version | ||
| Description: Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| srapart.ex | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| sradsg | ⊢ (𝜑 → (dist‘𝑊) = (dist‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | . 2 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
| 2 | srapart.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 3 | srapart.ex | . 2 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 4 | dsslid 13236 | . 2 ⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | |
| 5 | slotsdnscsi 13242 | . . . 4 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) | |
| 6 | 5 | simp1i 1030 | . . 3 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
| 7 | 6 | necomi 2485 | . 2 ⊢ (Scalar‘ndx) ≠ (dist‘ndx) |
| 8 | 5 | simp2i 1031 | . . 3 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 9 | 8 | necomi 2485 | . 2 ⊢ ( ·𝑠 ‘ndx) ≠ (dist‘ndx) |
| 10 | 5 | simp3i 1032 | . . 3 ⊢ (dist‘ndx) ≠ (·𝑖‘ndx) |
| 11 | 10 | necomi 2485 | . 2 ⊢ (·𝑖‘ndx) ≠ (dist‘ndx) |
| 12 | 1, 2, 3, 4, 7, 9, 11 | sralemg 14387 | 1 ⊢ (𝜑 → (dist‘𝑊) = (dist‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ⊆ wss 3197 ‘cfv 5314 ndxcnx 13015 Basecbs 13018 Scalarcsca 13099 ·𝑠 cvsca 13100 ·𝑖cip 13101 distcds 13105 subringAlg csra 14382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-z 9435 df-dec 9567 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 df-mulr 13110 df-sca 13112 df-vsca 13113 df-ip 13114 df-ds 13118 df-sra 14384 |
| This theorem is referenced by: rlmdsg 14412 |
| Copyright terms: Public domain | W3C validator |