| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sradsg | GIF version | ||
| Description: Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| srapart.ex | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| sradsg | ⊢ (𝜑 → (dist‘𝑊) = (dist‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | . 2 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
| 2 | srapart.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 3 | srapart.ex | . 2 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 4 | dsslid 12890 | . 2 ⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | |
| 5 | slotsdnscsi 12896 | . . . 4 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) | |
| 6 | 5 | simp1i 1008 | . . 3 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
| 7 | 6 | necomi 2452 | . 2 ⊢ (Scalar‘ndx) ≠ (dist‘ndx) |
| 8 | 5 | simp2i 1009 | . . 3 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 9 | 8 | necomi 2452 | . 2 ⊢ ( ·𝑠 ‘ndx) ≠ (dist‘ndx) |
| 10 | 5 | simp3i 1010 | . . 3 ⊢ (dist‘ndx) ≠ (·𝑖‘ndx) |
| 11 | 10 | necomi 2452 | . 2 ⊢ (·𝑖‘ndx) ≠ (dist‘ndx) |
| 12 | 1, 2, 3, 4, 7, 9, 11 | sralemg 13994 | 1 ⊢ (𝜑 → (dist‘𝑊) = (dist‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ⊆ wss 3157 ‘cfv 5258 ndxcnx 12675 Basecbs 12678 Scalarcsca 12758 ·𝑠 cvsca 12759 ·𝑖cip 12760 distcds 12764 subringAlg csra 13989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-dec 9458 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-mulr 12769 df-sca 12771 df-vsca 12772 df-ip 12773 df-ds 12777 df-sra 13991 |
| This theorem is referenced by: rlmdsg 14019 |
| Copyright terms: Public domain | W3C validator |