ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsubfz0 GIF version

Theorem uzsubfz0 10207
Description: Membership of an integer greater than L decreased by L in a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
Assertion
Ref Expression
uzsubfz0 ((𝐿 ∈ ℕ0𝑁 ∈ (ℤ𝐿)) → (𝑁𝐿) ∈ (0...𝑁))

Proof of Theorem uzsubfz0
StepHypRef Expression
1 simpl 109 . . 3 ((𝐿 ∈ ℕ0𝑁 ∈ (ℤ𝐿)) → 𝐿 ∈ ℕ0)
2 eluznn0 9676 . . 3 ((𝐿 ∈ ℕ0𝑁 ∈ (ℤ𝐿)) → 𝑁 ∈ ℕ0)
3 eluzle 9616 . . . 4 (𝑁 ∈ (ℤ𝐿) → 𝐿𝑁)
43adantl 277 . . 3 ((𝐿 ∈ ℕ0𝑁 ∈ (ℤ𝐿)) → 𝐿𝑁)
5 elfz2nn0 10190 . . 3 (𝐿 ∈ (0...𝑁) ↔ (𝐿 ∈ ℕ0𝑁 ∈ ℕ0𝐿𝑁))
61, 2, 4, 5syl3anbrc 1183 . 2 ((𝐿 ∈ ℕ0𝑁 ∈ (ℤ𝐿)) → 𝐿 ∈ (0...𝑁))
7 fznn0sub2 10206 . 2 (𝐿 ∈ (0...𝑁) → (𝑁𝐿) ∈ (0...𝑁))
86, 7syl 14 1 ((𝐿 ∈ ℕ0𝑁 ∈ (ℤ𝐿)) → (𝑁𝐿) ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5923  0cc0 7882  cle 8065  cmin 8200  0cn0 9252  cuz 9604  ...cfz 10086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-addcom 7982  ax-addass 7984  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-0id 7990  ax-rnegex 7991  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-ltadd 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-inn 8994  df-n0 9253  df-z 9330  df-uz 9605  df-fz 10087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator